Larbi Ben M'hidi-Oum El Bouaghi University Faculty of Exact Sciences and Natural and Life Sciences Departement of Mathematics and Computer Science

First year Licence Introduction to probability and descriptive statistics

Answers of the first series : Bacis concepts and statistical vocabulary

Answer 01 :

Items X_1, X_4 , and X_{12} are quantitative discrete.

Items X_3, X_9, X_{10} and X_{14} are quantitative continuous.

Items X_2, X_5, X_6 , and X_7 are qualitative nominal.

Items X_8, X_11 and X_{13} are qualitative ordinal.

Quant discrete variable	Quant continuous var	Qual nominal var	Qual ordinal var
$X_1 \text{ (pop : not det)}$	X_3 (pop : people)	X_2 (pop : people)	$X_8 $ (pop : not det)
$X_4 \text{ (pop : not det)}$	X_9 (pop : families)	$X_5 $ (pop : newborns)	X_{11} (pop : teachers)
X_{12} (pop : classrooms)	X_{10} (pop : computers)	$X_6 $ (pop : not det)	X_{13} (pop : products)
	$X_{14} $ (pop : cars)	$X_7 $ (pop : workers)	

"pop" means population and "not det" means not determine.

Answer 02 : The all measurements (observations) for the data set are the following :

Answer 05 :

- 1. the population of interest is weeks set (group of weeks) and the population size is n = 20.
- 2. The variable of interest is the number of products sold per week and its type is quantitative discrete data.
- 3. Complete the following frequency table :

Number of products cold m		17	19	Σ
Number of products sold x_i		17	19	\sum
Number of weeks n_i		07	05	n = 20
Relative frequency $f_i = \frac{n_i}{n}$	0.4	0.35	0.25	1
Percentage $p_i = f_i \times 100 \ (\%)$	40	35	25	100%
Increasing Cumulative Frequency	8	15	20	////
ICF $N_{x=x_i}$ \uparrow				
Decreasing Cumulative Frequency		05	0	////
DCF $N_{x=x_i} \downarrow$				
Increasing Cumulative Relative		0.75	1	///
Frequency ICRF $F_{x=x_i} \uparrow$				
Decreasing Cumulative Relative	0.6	0.25	0	///
Frequency DCRF $F_{x=x_i} \downarrow$				

The formula mathematic of ICF is given by :

$$N_x \uparrow = \sum_{i : x_i \le x} n_i , \quad x \in \mathbb{R}$$

Particular case : if $x = x_i$, we obtain $N_{x=x_i} \uparrow$ see line 5 in the frequency table.

The formula mathematic of DCF is given by :

$$N_x \downarrow = \sum_{i: x_i > x} n_i , \quad x \in \mathbb{R}$$

Or

$$N_x \downarrow = n - N_x \uparrow \quad because \quad N_x \uparrow + N_x \downarrow = n$$

Particular case : if $x = x_i$, we obtain $N_{x=x_i} \downarrow$ see line 6 in the frequency table.

The formula mathematic of ICRF is given by :

$$F_x \uparrow = \sum_{i : x_i \le x} f_i, \quad x \in \mathbb{R}$$

Particular case : if $x = x_i$, we obtain $F_{x=x_i} \uparrow$ see line 7.

The formula mathematic of DCRF is given by :

$$F_x \downarrow = \sum_{i: x_i > x} f_i, \quad x \in \mathbb{R}$$

Or

$$N_x \downarrow = n - N_x \uparrow \quad because \quad F_x \uparrow + F_x \downarrow = 1$$

Particular case : if $x = x_i$, we obtain $F_{x=x_i} \downarrow$ see line 8.

Answer 06 :

1. The population studied is a group of students, the population size n = 20,

the variable studied is the revision time per student,

and its type is quantitative continuous data.

2. The number of classes by using Sturge's rule is :

$$N_{classes} = 1 + 3.3 \times \log N = 5.29 \simeq 5$$

Then the class width (amplitude) : $a = \frac{max - min}{N_{classes}} = \frac{23 - 4}{5} = 3.8 \simeq 4$, so we obtain the following frequency table :

Revision time (classes) $[e_{i-1}, e_i]$	[4, 8[[8, 12[[12, 16]	[16, 20[[20, 24[Σ
Number of students (frequency) n_i	2	4	8	5	1	n = 20
Increasing Cumulative	2	6	14	19	20	/////
Frequency (ICF) $N_{x=e_i} \uparrow$						
Relative Frequency f_i	0.1	0.2	0.4	0.25	0.05	01
Increasing Cumulative	0.1	0.3	0.7	0.95	1	/////
Relative Frequency (ICRF) $F_{x=e_i}$ \uparrow						

3. Line 3 : $N_x \uparrow = \sum_{x_i < x} n_i$. Line 4 : $f_i = \frac{n_i}{n}$. Line 5 : $F_x \uparrow = \sum_{x_i < x} f_i$.