
Chapter 2

Random Variables

This chapter is dedicated to the presentation of one-dimensional random variables. After an example
illustrating this concept, we will consider the axiomatic de�nition: a random variable is a function that
assigns a real number to each element ! of a fundamental set. We then study discrete and continuous
random variables. The �rst thing to clarify is that throughout the rest of the document, we will use the
abbreviation "r.v." for "random variable," both singular and plural.

2.1 Introductory Example

Consider the random experiment of rolling a fair die twice. The fundamental set is 
 = f(i; j); i; j = 1; 2; :::; 6g,
and the 36 pairs are equally probable. We associate with each pair the sum of the two numbers, i.e.,
(i; j) 7! i+j. We thus de�ne a function from the fundamental set 
 to the set of numbers f2; 3; 4; :::; 12g.
In this case, we say that the functionX: "the sum of the two numbers rolled" is a random variable de�ned
on the fundamental set 
 and taking values in the set E = f2; 3; 4; :::; 12g.

2.2 De�nitions, Vocabulary

Let us begin with the following fundamental de�nition:
Let (
;F ;P) be a probability space. A random variable de�ned on 
 and taking values in (E;B)

is any function X from 
 to E such that:

8B 2 B; X�1(B) = f! 2 
; X(!) 2 Bg 2 F

Such a function is said to be measurable. In practice, we rarely verify the measurability. When
E = R, we obtain the following de�nition:

De�nition 1. Let (
;F ;P) be a probability space. A real random variable de�ned on 
 is any
mapping X from 
 to R satisfying:

8x 2 R; X�1 (]�1; x]) = f! 2 
 j X(!) � xg 2 F :

* Due to the structure of the Borel �-algebra B(R) (the smallest �-algebra containing all intervals),
the de�nition implies that a random variable X always satis�es: 8B 2 B(R), X�1(B) = f! 2 
 j X(!) 2
Bg 2 F .
* The following notation is commonly used: if B 2 B(R), then the set X�1(B) is abbreviated as

fX 2 Bg, i.e.,
X�1(B) = f! 2 
 j X(!) 2 Bg = fX 2 Bg:

Similarly, the set X�1 (]�1; x]) is denoted as fX � xg, i.e.,

X�1 (]�1; x]) = f! 2 
 j X(!) � xg = fX � xg:
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2.2.1 Law of a Random Variable

In the introductory example, if we want to evaluate the probability associated with each number in the
set E, we need to evaluate the probability associated with each event X�1(fig), i = 2; 3; : : : ; 12, which
should be stated as: the probability that the outcome of the random variable X is i. Thus, to each
possible outcome of the mapping X, we associate a probability, and all these probabilities together form
the probability distribution of the random variable X. We now introduce the probability distribution of
a random variable in general.

Theorem 1. Let (
;F ;P) be a probability space, and let X be a random variable de�ned on 
 with
values in (E;B), where B is a �-algebra on E. The mapping PX de�ned by:

PX : B �! [0; 1]

: B 7! PX(B) = P(X�1(B))

is a probability measure on (E;B).

Proof. * First, we have X�1(E) = 
, and thus: PX(E) = P(X�1(E)) = P(
) = 1.
* If (Bn)n2N is a sequence of pairwise disjoint elements of B, then (X�1(Bn))n2N is a sequence of

pairwise disjoint elements of F . Since X�1 �S
n2NBn

�
=
S
n2NX

�1(Bn), and P is a probability measure,
we have:

PX

 [
n2N

Bn

!
= P

 
X�1

 [
n2N

Bn

!!
= P

 [
n2N

X�1(Bn)

!
=
X
n2N

P(X�1(Bn)) =
X
n2N

PX(Bn):

This shows that PX is a probability measure on (E;B).

De�nition 2. The probability measure PX given by the above theorem is called the probability distribution
of the random variable X.

Now, the question arises: how to describe the distribution of a random variable? This depends
directly on the space (E;B), and in this case, there are two important spaces: the case where E = R,
in which case the random variable X is called continuous, and the case where E is at most countable
(�nite or countable), leading to the following de�nition:

De�nition 3. A real random variable X is called discrete if the set X(
) is at most countable (�nite
or countable): there exists a sequence of distinct real numbers (xi)i2N such that X(
) = fxi j i 2 Ng.

Probability Distribution of a Continuous Random Variable

Let (
;F ;P) be a probability space, and letX be a random variable de�ned on 
 with values in (R;B(R)),
and let PX be its probability distribution. As we have seen, determining the distribution PX is nothing
other than determining a probability measure on (R;B(R)), and according to what we saw in the previous
chapter, every probability measure on (R;B(R)) is characterized by its cumulative distribution function
F . This justi�es the following de�nition:

De�nition 4. Let X be a real random variable. The cumulative distribution function of X, denoted F
(or FX if necessary), is the following function:

F : R �! [0; 1]

: x 7! F (x) = PX (]�1; x]) = P(X � x):

In this case, the probability distribution PX of the random variable X is entirely determined by its
cumulative distribution function F .

The terminology "cumulative distribution function of X" is somewhat improper because, in fact, F
depends on the probability measure PX and not directly on X. One of the interests of the cumulative
distribution function is that it allows expressing P(X 2 I) for any real interval I � R. This is the subject
of the following result:
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Proposition 2. Let X be a real random variable, and let F be its cumulative distribution function.
Then:
1. F is increasing.
2. limx!�1 F (x) = 0 and limx!+1 F (x) = 1.
3. F is right-continuous at every point x, i.e., limh&0 F (x+ h) = F (x).
4. If a and b are two real numbers such that a < b, we have (denoting F (x� 0) = limh%0 F (x� h)):
(a). P(X = b) = PX(fbg) = F (b)� F (b� 0).
(b). P(a < X � b) = PX (]a; b]) = F (b)� F (a).
(c). P(a � X � b) = PX ([a; b]) = F (b)� F (a� 0).
(d). P(a < X < b) = PX (]a; b[) = F (b� 0)� F (a).
(e). P(a � X < b) = PX ([a; b[) = F (b� 0)� F (a� 0).
(f). P(X < b) = PX (]�1; b[) = F (b� 0).
(g). P(X � b) = PX ([b;+1[) = 1� F (b� 0).
(h). P(X > b) = PX (]b;+1[) = 1� F (b).

A consequence of this result is that F is continuous at a point x if and only if PX(fxg) = 0. Note
also that since F is increasing, its points of discontinuity form an at most countable set. Also, if F is
continuous, we obtain (b) = (c) = (d) = (e) = F (b)� F (a), and (g) = (h) = 1� F (b).

Example 1. Let X be a real random variable with cumulative distribution function F given by (where
[x] denotes the integer part of x):

F (x) =

8><>:
1
5e
x�1; if x < 1;

1
4 [x]; if 1 � x < 3;
1� 1

2x ; otherwise:

We easily obtain the following probabilities: P (X = 0) = 0, P (X = 2) = F (2)� F (2� 0) = 1
2 �

1
4 =

1
4 ,

and, noting that F (3) = 5
6 , F (1) =

1
4 , and F (1 � 0) =

1
5 : P (1 < X � 3) = F (3) � F (1) = 7

12 ,
P (1 � X � 3) = F (3)� F (1� 0) = 19

30 .

We now come to a very profound result. It shows, in fact, that the distribution of a real random
variable is entirely characterized by its cumulative distribution function.

Theorem 3. The distribution PX of a real random variable X is entirely determined by its cumulative
distribution function F .
More precisely, if F : R �! [0; 1] is an increasing, right-continuous function satisfying limx!�1 F (x) =

0 and limx!+1 F (x) = 1, there exists a unique probability measure P on (R;B(R)) such that:

8x 2 R; F (x) = P (]�1; x]) :

We will now focus on two particular types of real random variables: discrete random variables on
one hand, and absolutely continuous random variables on the other.

2.3 Discrete Random Variables

As we have seen in the de�nition, a real random variable X is called discrete if the set X(
) is at most
countable, i.e., there exists a sequence of distinct real numbers (xi)i2N such that X(
) = fxi j i 2 Ng.
If we denote for i 2 N, pi = P(X = xi), we must have

P
i2N pi = 1. Some of the pi may be zero.

Example 2. Imagine that we roll a die several times in a row:
* If X represents the result of the �rst roll, then: X(
) = f1; 2; 3; 4; 5; 6g and p1 = p2 = � � � = p6 = 1

6 .
* If X now represents the �rst roll for which we obtain 1, then: X(
) = N� and for all k 2 N�:

pk = P(X = k) =
�
5
6

�k�1 1
6 .

We will see that the distribution of a discrete real random variable is relatively simple to characterize.
First, for a real number x, determine the set fX � xg. Since X(
) = fxi j i 2 Ng, we have fX � xg =S
i2N;xi�xfX = xig.
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From this set equality, we deduce two things: �rst, X is measurable if and only if the sets fX = xig
belong to F for all i 2 N; and second, using the �-additivity of the probability measure P, we obtain:

F (x) = P(X � x) = P

0@ [
i2N;xi�x

fX = xig

1A =
X

i2N;xi�x
P(fX = xig) =

X
i2N;xi�x

pi:

We see then that the cumulative distribution function of X� and consequently its distribution� is
entirely determined by the real numbers pi = P(fX = xig). We thus obtain the following result:

Theorem 4. Let X be a discrete real random variable taking the values (xi)i2N. The distribution of X
is completely determined by the values

pi = P(fX = xig) = PX(fxig):

More precisely, for any Borel set B,

P(fX 2 Bg) =
X

i2N;xi2B
pi:

For a discrete variable, what does the graph of the function F look like? We have already said, with
the notations of the previous theorem, that F (x) =

P
i2N;xi�x pi. If we assume that the xi are ordered

in increasing order, we have for x < x0, F (x) = 0, then for x 2 [x0; x1[, F (x) = p0, then on [x1; x2[,
F (x) = p0 + p1, and so on. F is thus a piecewise constant function.

Example 3. Let X be a random variable taking the values �2; 1; 2 with respective probabilities P(fX =
�2g) = 1

3 , P(fX = 1g) = 1
2 , P(fX = 2g) = 1

6 . The cumulative distribution function of X is given by:

F (x) =

8>>><>>>:
0; if x < �2;
1
3 ; if x 2 [�2; 1[;
5
6 ; if x 2 [1; 2[;
1; otherwise:

2.4 Absolutely Continuous Random Variables

In this section, we consider the case of absolutely continuous real random variables; let�s start with a
de�nition:

De�nition 5. Let f : R �! R be a function. f is a probability density function if:
1. f is positive, i.e., 8x 2 R : f(x) � 0.
2.
R
R f(x) dx = 1.

Example 4. The function f(x) = 1
4e
� jxj

2 is a probability density function.

De�nition 6. Let X be a real random variable with cumulative distribution function F . We say that X
is absolutely continuous if there exists a probability density function f such that:

8x 2 R; F (x) = P(X � x) =
Z x

�1
f(t) dt:

In this case, we say that X has density f , or that f is the probability density function of the random
variable X.

If X is absolutely continuous with density f , then for any interval Any union of intervals (and even
any Borel set) B,

P (X 2 B) =
Z
B

f (t) dt

The question that now arises is: how can we recognize whether a real random variable X has a
density? Here is a result that clari�es the relationship between the cumulative distribution function and
the probability density function.
Let X be a random variable with cumulative distribution function F .
1. If X has a density, then F is continuous, and thus P (X = x) = 0 for all x 2 R.
2. If F is di¤erentiable (of class C1), then X has a density f de�ned by f(x) = F 0(x).
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2.5 Characteristics of a Random Variable

A random variable is entirely determined either by its cumulative distribution function, its density, or
its probability function. In statistics, we generally focus on certain characteristic values that do not fully
describe the random variable but are often very important. The most important characteristic values
are the mathematical expectation and the variance.

2.5.1 Mathematical Expectation

The mathematical expectation, denoted E (X), of a random variable X, also called the mean, if it exists.
1. In the case of a discrete random variable X, whose possible values are xi; i 2 N, the expectation

of X is de�ned by the expression

E (X) =
X
i2N

xiP (X = xi) =
X
i2N

xipi, if it exists.

In concrete terms, the expectation of X is the weighted average of the values that X can take, with
the weights being the probabilities of these values.
2. In the case of an absolutely continuous random variable X, whose probability density is f , the

expectation of X is de�ned by:

E (X) =

+1Z
�1

xf (x) dx; if it exists.

Example 5. We roll a fair die once, and let X be the random variable representing the number obtained.
Then X takes the values 1; 2; 3; 4; 5; 6 with equal probability pi = 1

6 for i = 1; 2; 3; 4; 5; 6. Thus, E (X) =
1 � 16 + 2 �

1
6 + � � �+ 6 �

1
6 =

21
6 = 3:5.

Example 6. Let X be a real random variable with probability density f de�ned by

f (x) =

(
e�x; if x � 0
0; if x < 0

:

Then:

E (X) =

+1Z
�1

xf (x) dx =

0Z
�1

0 dx+

+1Z
0

xe�xdx = 1

Remark 1. �The expectation is not always de�ned. Consider the case where X is a random variable

that can take an in�nite number of distinct values, E (X) =
+1P
i=1

xipi. When the sum makes sense and

does not depend on the order of the terms, and only in this case, we consider that X has a mathematical
expectation.
�The expectation of a random variable does not necessarily belong to the possible values of X. Thus,

the mathematical expectation of the values taken by a fair die is 3:5, while the die can only show integer
values. E (X) is a number around which the possible values of the random variable X are distributed.

A random variable X is said to be centered if E (X) = 0.

2.5.2 Expectation of a Function of a Random Variable

In general, we can de�ne the expectation of a function of a random variable X, leading to the following
de�nition:
Let X be a real random variable de�ned on (
;F ;P) and �: R ! R a function. We de�ne the

random variable Y = �(X) by:
Y : 
! R; ! 7! � (X (!))

And if � is integrable, we have:
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1. In the case of a discrete random variable X, whose possible values are xi; i 2 N, the expectation
of Y is de�ned by:

E (Y ) = E (� (X)) =
X
i2N

� (xi)P (X = xi) =
X
i2N

� (xi) pi, if it exists.

2. In the case of an absolutely continuous random variable X, whose probability density is f , the
expectation of Y is de�ned by:

E (Y ) = E (� (X)) =

+1Z
�1

� (x) f (x) dx; if it exists.

2.5.3 Properties of Mathematical Expectation

1. The mathematical expectation of a constant is the constant itself. That is, if X = c (c 2 R), then
E (X) = c.

2. If X is a random variable and � 2 R, then: E (�X) = �E (X).

3. If X and Y are two random variables, then: E (X + Y ) = E (X) + E (Y ).

4. Using points 2 and 3, we obtain: If X and Y are two random variables, and �; � 2 R, then
E (�X + �Y ) = �E (X) + �E (Y ). That is, the mathematical expectation is a linear operator.

5. More generally, if (Xi)i=1;2;:::;n is a sequence of random variables and (�i)i=1;2;:::;n is a sequence

of real numbers, then E
�

nP
i=1

�iXi

�
=

nP
i=1

�iE (Xi).

6. If X is a random variable with expectation E (X), then Y = X � E (X) is a centered random
variable (E (Y ) = 0), meaning any random variable can be centered.

7. If X is a positive random variable, i.e., P (X � 0) = 1, then E (X) � 0.

2.5.4 Moments of a Random Variable

The moment of order r of the random variable X is the expectation E (Xr), de�ned by:
1. In the case of a discrete random variable X, whose possible values are xi; i 2 N:

E (Xr) =
X
i2N

xriP (X = xi) =
X
i2N

xri pi, if it exists.

2. In the case of an absolutely continuous random variable X, whose probability density is f :

E (Xr) =

+1Z
�1

xrf (x) dx; if it exists.

We note that:
* The expectation E (X) of a random variable X is nothing other than its moment of order 1.
* For r = 0, we obtain E

�
X0
�
= E (1) = 1.

The moment of order r centered around the value a 2 R of the random variable X is the expectation
E ((X � a)r), de�ned by:
1. In the case of a discrete random variable X, whose possible values are xi; i 2 N:

E ((X � a)r) =
X
i2N

(xi � a)r P (X = xi) =
X
i2N

(xi � a)r pi, if it exists.

2. In the case of an absolutely continuous random variable X, whose probability density is f :

E ((X � a)r) =
+1Z
�1

(x� a)r f (x) dx; if it exists.
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2.5.5 Variance and Standard Deviation of a Random Variable

If X is a real random variable, the �rst information we seek is the mean value, E (X). Next, we are
interested in the dispersion of X around this mean value: this is the notion of variance.
Let X be a real random variable such that E

�
X2
�
exists. Then the variance of X, denoted V (X)

or V ar (X), is the moment of X of order 2 centered around E (X). That is,

V (X) = E
�
(X � E (X))2

�
= E

�
X2
�
� (E (X))2

The standard deviation of the random variable X, denoted � or �X , is the positive square root of its
variance. That is:

�X =
p
V (X)

Example 7. We roll a fair die once, and let X be the random variable representing the number obtained.
Then X takes the values 1; 2; 3; 4; 5; 6 with equal probability pi = 1

6 for i = 1; 2; 3; 4; 5; 6. Thus, E (X) =
3:5. To calculate the variance, we �rst calculate E

�
X2
�
:

E
�
X2
�
=

6X
i=1

x2i pi = 1
2 � 1
6
+ 22 � 1

6
+ � � �+ 62 � 1

6
=
1

6
(1 + 4 + 9 + 16 + 25 + 36) =

91

6
= 15:17

V (X) = E
�
X2
�
� (E (X))2 = 15:17� (3:5)2 = 15:17� 12:25 = 2:92

and �X =
p
V (X) =

p
2:92 = 1:7.

2.5.6 Properties of the Variance of a Random Variable

1. The variance and standard deviation are positive values, i.e., V (X) � 0 and �X � 0.

2. The variance is zero if and only if the random variable is constant. That is, X = c (c 2 R) ,
V (X) = 0.

3. If X is a random variable and �; � 2 R, then: V (�X + �) = �2V (X), and ��X+� = j�j�X .

Let X be a real random variable. X is said to be standardized if V (X) = 1.
Let X be a real random variable with expectation E (X) and standard deviation �X . The centered

standardized random variable associated with X, denoted X�, is de�ned by:

X� =
X � E (X)

�X

It can be easily veri�ed that E (X�) = 0 and V (X�) = 1.


