
Chapter III: Numerical Integration 

 

1 
 

Chapter III: Numerical Integration 

 

In this chapter, we will study some approximate methods for calculating definite integrals. These 

methods also allow the calculation of integrals that do not have direct or analytical solutions. We can 

also calculate the integral of a function given in tabular or discrete form. 

3.1 Trapezoidal Rule 

This formula is very simple; it allows us to replace the curve f(x) of the function to be integrated by a 

straight line that connects the points (a, f(a)) and (b, f(b)), which gives a trapezoid (Fig. 3.1). 
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Fig. 3.1: Trapezoidal Method 

The integral is thus replaced by the area of the trapezoid: 

𝒔 = ∫ 𝒇(𝒙) =
𝒃

𝒂

𝒉

𝟐
(𝒇(𝒂) + 𝒇(𝒃))    

With h = b-a is called the integration step. We can notice that there is a significant difference between 

the curve of the function and the straight line, which means that we make a calculation error. To 

minimize this error, we use another more suitable form of this formula. 

3.1.1 Generalized Trapezoidal Rule 

We divide the interval [a, b] into several equal subintervals and apply the trapezoidal rule to each 

subinterval (Fig. 3.2). We thus have the subintervals [𝒂 = 𝒙𝟎, 𝒙𝟏] ∪ [𝒙𝟏, 𝒙𝟐] ∪ … . .∪ [𝒙𝒏−𝟏, 𝒙𝒏 = 𝒃], 

the application of the trapezoidal rule gives: 

∫ 𝑓(𝑥) =
𝑏

𝑎

ℎ

2
(𝑓(𝑥0) + 𝑓(𝑥1)) +

ℎ

2
(𝑓(𝑥1) + 𝑓(𝑥2)) +

ℎ

2
(𝑓(𝑥2) + 𝑓(𝑥3)) + ⋯+

ℎ

2
(𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)) 

∫ 𝑓(𝑥) =
𝑏

𝑎

ℎ

2
(𝑓(𝑥0) + 2∑ 𝑓(𝑥𝑖) + 𝑓(𝑥𝑛)

𝑛−1

𝑖=1
) =

ℎ

2
(𝑓0 + 2∑ 𝑓𝑖 + 𝑓𝑛

𝑛−1

𝑖=1
) 
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Fig. 3.2: Generalized Trapezoidal Method 

3.1.2 Integration Error 

This is the difference between the exact integral of the function and that calculated by the trapezoidal 

method; it is denoted by R(f). 

𝑹(𝒇) = ∫ 𝒇(𝒙)𝒅𝒙
𝒙𝒏

𝒙𝟎
−

𝒉

𝟐
(𝒇𝟎 + 𝟐∑ 𝒇𝒊 + 𝒇𝒏

𝒏−𝟏
𝒊=𝟏 ) = −

𝒃−𝒂

𝟏𝟐
𝒉𝟐𝒇′′(𝒛)  with  𝒛 ∈ [𝒂, 𝒃]  

Example: Let's calculate the integral ∫ 𝑒−𝑥2
𝑑𝑥

1

0
 with an accuracy of 0.001 by the trapezoidal method. 

We must first find the number of divisions to make to obtain this accuracy. The integration error is 

written 𝑹(𝒇) = −
𝒃−𝒂

𝟏𝟐
𝒉𝟐𝒇′′(𝒛) as its absolute value must be less than or equal to the given accuracy 

(0.001), i.e.:  

|𝑹(𝒇)| = |−
𝒃 − 𝒂

𝟏𝟐
𝒉𝟐𝒇′′(𝒛)| ≤ 𝟎. 𝟎𝟎𝟏 

The function 𝑓(𝑥) =  𝑒−𝑥2
, so its second derivative is 𝑓"(𝑥) =  2(2𝑥2 − 1)𝑒−𝑥2

, this function is 

strictly increasing in the given interval (Fig. 3.3). 
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Fig. 3.3. Second derivative curve of 𝑒−𝑥2
 

We calculate  𝑀 = 𝑚𝑎𝑥|𝒇′′(𝒛)| = 𝟐  à 𝒙 = 𝟎 

So   |𝑹(𝒇)| = |−
𝒃−𝒂

𝟏𝟐
𝒉𝟐𝒇′′(𝒛)| ≤ 𝟎. 𝟎𝟎𝟏 
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Hence 𝒉 ≤ √
𝟏𝟐∗𝟎.𝟎𝟎𝟏

(𝟏−𝟎)∗𝟐
= 𝟎. 𝟎𝟕𝟕𝟒  then  n =

𝟏

𝟎.𝟎𝟕𝟕𝟒
= 𝟏𝟐. 𝟗𝟏  we have 13 divisions.  

The integration step ℎ =
1

13
. 

∫ 𝑒−𝑥2
𝑑𝑥

1

0
=

1

2∗13
(𝑒−02

+ 2∑ 𝑒−(
𝑖

13
)212

𝑖=1 + 𝑒−12
) = 0.74646  

 

3.2 Simpson's Rules 

In this formula, we do not replace the function with a straight line but with a parabola of degree n less 

than or equal to two. The latter must pass through three points (𝒙𝟎, 𝒚𝟎), (𝒙𝟏, 𝒚𝟏)𝐞𝐭 (𝒙𝟐, 𝒚𝟐), which 

means that this method is only applicable for an even number of slices (a slice is the interval between 

two points) (Fig. 3.4.). Simpson's formula is written: 

∫ 𝒇(𝒙) ≅
𝒃

𝒂

𝒉

𝟑
(𝒇(𝒙𝟎) + 𝟒𝒇(𝒙𝟏) + 𝒇(𝒙𝟐)) 

 

Fig. 3.4: Simpson's Method 

If we generalize Simpson's formula for 2n subintervals with an integration step 𝒉 =
𝒃−𝒂

𝟐𝒏
 ,  𝒂 = 𝒙𝟎 <

𝒙𝟏 < ⋯… .< 𝒙𝟐𝒏 = 𝒃  and  𝒙𝒌 = 𝒂 + 𝒉𝒌  , for k=0,1,2,......,2n. 

The generalized Simpson's formula is written: 

∫ 𝒇(𝒙) ≅
𝒃

𝒂

𝒉

𝟑
(𝒇(𝒙𝟎) + 𝟐∑ 𝒇(𝒙𝒊) +

𝒊 𝒑𝒂𝒊𝒓
 𝟒∑ 𝒇(𝒙𝒊)

𝒊 𝒊𝒎𝒑𝒂𝒊𝒓
+ 𝒇(𝒙𝟐𝒏)) 

The interpolation error of Simpson's formula is written: 

 𝑹(𝒇) = −
𝒃−𝒂

𝟏𝟖𝟎
𝒉𝟒𝒇(𝟒)(𝒛)  with 𝒛 ∈ [𝒂, 𝒃] 

Example: Let's calculate the integral ∫ 𝑒−𝑥2
𝑑𝑥

1

0
 with an accuracy of 0.001 by Simpson's method. We 

must first find the number of divisions to make to obtain this accuracy. 

The integration error is written:  𝑹(𝒇) = −
(𝒃−𝒂)

𝟏𝟖𝟎
𝒉𝟒𝒇(𝟒)(𝒛) 
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its absolute value must be less than or equal to the given accuracy (0.001), i.e.: 

|𝑹(𝒇)| = |−
(𝒃 − 𝒂)

𝟏𝟖𝟎
𝒉𝟒𝒇(𝟒)(𝒛)| ≤ 𝟎. 𝟎𝟎𝟏 

The function is 𝑓(𝑥) =  𝑒−𝑥2
, its fourth derivative 𝑓(4)(𝑥) =  (16𝑥4 − 48𝑥2 + 12)𝑒−𝑥2

, this function 

is not monotonic in the given interval. We calculate its maximum by the Origin plotter (Fig. 3.5.).  
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Fig. 3.5. Fourth derivative curve of 𝑒−𝑥2
 

𝑀 = 𝑚𝑎𝑥|𝒇(𝟒)(𝒛)| = 𝟏𝟐 à 𝒙 = 𝟎. We have  𝒉 ≤ √
𝟏𝟖𝟎∗𝟎.𝟎𝟎𝟏

(𝟏−𝟎)∗𝟏𝟐

𝟒
= 𝟎. 𝟑𝟓  then 𝟐𝒏 =

𝟏

𝟎.𝟑𝟓
= 𝟐. 𝟖𝟓 so 

2n=4. And the integration step ℎ =
1

4
= 0.25. 

We find: ∫ 𝑒−𝑥2
𝑑𝑥

1

0
=

0.25

3
(𝑒−02

+ 4(𝑒−0.252
+ 𝑒−0.752

) + 2𝑒−0.52
+ 𝑒−12

) = 0.7469 

 

3.3 Quadrature Method 

This method allows the development of numerical integration formulas based on the Lagrange 

polynomial. For example, the trapezoidal and Simpson's rules can be found using this method, or other 

more efficient integration formulas can be constructed. In this method, the function is replaced by a 

Lagrange polynomial, then the found polynomial is integrated. We can write: 

𝒇(𝒙) ≅ 𝑷𝒏(𝒙) = ∑ 𝒇𝒊𝑳𝒊(𝒙)
𝒏

𝒊=𝟎
 

 
where P(x) is the Lagrange polynomial approximating f(x). 

Integrating: 

∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂

≅ ∫ 𝑷𝒏(𝒙)𝒅𝒙
𝒃

𝒂

= ∑ 𝒇𝒊

𝒏

𝒊=𝟎
∫ 𝑳𝒊(𝒙)𝒅𝒙

𝒃

𝒂

 

If we set: 

𝑨𝒊 = ∫ 𝑳𝒊(𝒙)𝒅𝒙
𝒃

𝒂
  pour i=0,1,…,n 
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where Lᵢ(x) are the Lagrange basis polynomials. 

We obtain the quadrature formula: 

∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂

≅ ∑ 𝒇𝒊

𝒏

𝒊=𝟎
𝑨𝒊 

We must now choose the form of the function f(x). In our case, we take: 

𝒇(𝒙) = 𝒙𝒌   with  k=0,1,2,….,n 

Substituting into the integral: 

∫ 𝒙𝒌𝒅𝒙 ≅
𝒃

𝒂
∑ 𝒇𝒊

𝒏
𝒊=𝟎 𝑨𝒊 =

𝒃𝒌+𝟏−𝒂𝒌+𝟏

𝒌+𝟏
   k=0,1,2,….,n 

By varying i from 0 to n for each value of k, we will have: 

for k=0:           𝒙𝟎
𝟎𝑨𝟎 + 𝒙𝟏

𝟎𝑨𝟏 + ⋯…+ 𝒙𝒏
𝟎𝑨𝟎 =

𝒃𝟏−𝒂𝟏

𝟏
     

for k=1:  𝒙𝟎
𝟏𝑨𝟎 + 𝒙𝟏

𝟏𝑨𝟏 + ⋯…+ 𝒙𝒏
𝟏𝑨𝟎 =

𝒃𝟐−𝒂𝟐

𝟐
  

for k=2:  𝒙𝟎
𝟐𝑨𝟎 + 𝒙𝟏

𝟐𝑨𝟏 + ⋯…+ 𝒙𝒏
𝟐𝑨𝟎 =

𝒃𝟑−𝒂𝟑

𝟑
 

……………………………………………………………………………………  

for k=n:  𝒙𝟎
𝒏𝑨𝟎 + 𝒙𝟏

𝒏𝑨𝟏 + ⋯…+ 𝒙𝒏
𝒏𝑨𝟎 =

𝒃𝒏+𝟏−𝒂𝒏+𝟏

𝒏+𝟏
 

Thus, we obtain for all values of i and k the following system: 

[
 
 
 
 
𝟏    𝟏    𝟏  ……𝟏
𝒙𝟎  𝒙𝟏  𝒙𝟐 … . . 𝒙𝒏

𝒙𝟎
𝟐  𝒙𝟏

𝟐  𝒙𝟐
𝟐 … . 𝒙𝒏

𝟐  
………………… .
𝒙𝟎

𝒏  𝒙𝟏
𝒏  𝒙𝟐

𝒏 … . 𝒙𝒏
𝒏 ]
 
 
 
 

[
 
 
 
 
𝑨𝟎

𝑨𝟏

𝑨𝟐

.
𝑨𝒏]

 
 
 
 

=

[
 
 
 
 
𝑰𝟎

𝑰𝟏

𝑰𝟐

.
𝑰𝒏]

 
 
 
 

   with  𝑰𝒌 =
𝒃𝒌+𝟏−𝒂𝒌+𝟏

𝒌+𝟏
 

The determinant of the matrix of the found system is called the "Von-Dermonde" determinant. It is 

non-zero, therefore the solution of this system exists and is unique (𝑨𝟎, 𝑨𝟏, … . . , 𝑨𝒏). 

Example: 

Let's calculate the integral ∫ 𝑒−𝑥2
𝑑𝑥

1

0
 with a formula of the following form: 

∫ 𝑒−𝑥2
𝑑𝑥

1

0

= 𝑨𝟎𝒇(𝟎) + 𝑨𝟏𝒇(𝟎. 𝟐𝟓) + 𝑨𝟐𝒇(𝟎. 𝟓) + 𝑨𝟑𝒇(𝟎. 𝟕𝟓) + 𝑨𝟐𝒇(𝟏. 𝟎𝟎) 

In this case, we first look for the constants Aᵢ, then we calculate the integral. These constants are 

given by the following system of equations: 

[
 
 
 
 
1  1 1
0 0.25 0.5
0        0.0625     0.25

           
1

0.75
0.5626

          
1
1
1

0  0.015625 0.125
0 0.00390625 0.0625

    
0.421875 1

0.31640625 1]
 
 
 
 

[
 
 
 
 
𝑨𝟎

𝑨𝟏

𝑨𝟐

𝑨𝟑

𝑨𝟒]
 
 
 
 

=

[
 
 
 
 

𝟏
𝟎. 𝟓

𝟎. 𝟑𝟑𝟑
𝟎. 𝟐𝟓𝟎
𝟎. 𝟐𝟎𝟎]

 
 
 
 

 

The solution of the system is (0.0691, 0.3812, 0.1052, 0.3694, 0.0751), therefore: 

∫ 𝑒−𝑥2
𝑑𝑥

1

0

= 0.0691𝒆𝟎 + 0.3812𝒆−𝟎.𝟐𝟓𝟐
+ 0.1052𝒆−𝟎.𝟓𝟐

+ 0.3694𝒆−𝟎.𝟕𝟓𝟐
+ 0.0751𝒆−𝟏𝟐

= 𝟎. 𝟕𝟒𝟕𝟐 

 

This is the quadrature formula for this specific example. You would then need to know the function 

f(x) and the values of x₀, x₁, x₂, x₃, and x₄ to compute the approximate value of the integral. 


