First year

TD 03

Exercise 1

Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

- 1. Calculate A^2 and A^3 . Evaluate $A^3 A^2 + A I$.
- 2. Express A^{-1} in terms of A^2 , A, and I.
- 3. Express A^4 in terms of A^2 , A, and I.

Exercise 2

Let $A = \begin{bmatrix} 3 & 0 & 1 \\ -1 & 3 & -2 \\ -1 & 1 & 0 \end{bmatrix}$

Calculate $(A - 2I)^3$, then deduce that A is invertible and find A^{-1} in terms of I, A, and A^2 .

Exercise 3

Consider the matrix A defined as : $A = \begin{bmatrix} 5 & 6 & -3 \\ -18 & -19 & 9 \\ -30 & -30 & 14 \end{bmatrix}$ 1. Is A invertible? If yes, determine its inverse A^{-1} . 2. Calculate $A^2 - A - 2I_3 = 0$, where I_3 is the identity matrix.

Exercise 4

Consider_the matrix A defined as :

 $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

- 1. Find $a, b \in \mathbb{R}$ such that $A^2 = aI_3 + bA$.
- 2. Deduce that A is invertible and determine its inverse.

Exercise 5

Consider the matrix associated with the linear transformation f defined on \mathbb{R}^3 with respect to the canonical basis :

 $\begin{bmatrix} 1 & -1 & 5 \end{bmatrix}$ $A = \begin{bmatrix} 3 & 0 & 2 \end{bmatrix}$ 4

- 1. Determine the linear application f.
- 2. Find ker f and Im f, along with their dimensions. Is f bijective?
- 3. Let $S = \{v_1 = (1, 1, 1), v_2 = (1, 0, 1), v_3 = (2, -1, 0)\}$:
 - (a) Show that S is a basis for \mathbb{R}^3 .
 - (b) Find the matrix associated with f with respect to the basis S.