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Chapter 1

Basic Notions for Probability
Calculation

1.1 Introduction

Probability calculation is a branch of mathematics aimed at studying random phenomena, i.e., exper-
iments whose outcome cannot be predicted with certainty. For example, if the experiment is repeated
several times, di¤erent results may be obtained. A form of indeterminacy appears in the outcome of the
experiment. This form of randomness can be interpreted as our inability to conceive, explain, and use
the considered physical phenomena or as a lack of information about the conditions of the experiment.
Some phenomena may be inherently subject to randomness.
Examples of such experiments are numerous: one can think of the game of heads or tails, rolling

a die, the sex of an unborn child, the waiting time of a customer at the post o¢ ce, the lifespan of a
radioactive particle.
To study these phenomena, we must �rst create a mathematical model. The model chosen to describe

random experiments is that of a triplet commonly denoted (
;F ;P) and called a probability space.

1.2 Axioms of Probability Calculation

1.2.1 Notion of Random Experiment

When studying a random phenomenon, it is possible to assimilate it to a random experiment, i.e., if the
same experiment is repeated several times under well-determined conditions, the result of this experiment
varies and seems to obey stochastic considerations, in other words, chance. In this case, we say that we
are dealing with a random experiment, usually denoted by the letter �.
Examples
1.a) Dice Game:
Two dice of di¤erent colors, with six faces numbered from 1 to 6, are thrown onto a �at surface. At

the end of the throw, the two numbers appearing on the top faces of the dice are recorded. These two
numbers represent the result of the experiment.
1.b) Heads or Tails Game:
Two coins are thrown onto a �at surface, and what is seen on the top face of each coin is recorded. If

we denote F for heads and P for tails, then the result of the experiment is expressed by the two letters
F, P.
1.c) Drawing Without Replacement:
An urn contains N balls, of which r are red and n are black. The experiment consists of drawing

two balls successively from the urn without replacing the �rst ball drawn. The result of the experiment
is the color of the ball obtained in the �rst draw and that obtained in the second, in that order.
1.d) Height Measurement:
The height of an individual chosen at random from a well-de�ned statistical population is recorded.

The result of the experiment is a positive real number (after choosing a unit of measurement).
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Fundamental Set 


A fundamental set 
 is associated with the random experiment �, whose elements represent all possible
outcomes of the experiment �.
Examples
1.a) 
 = f(i; j); i and j are integers between 1 and 6g.
1.b) 
 = fPP; FF; PF; FPg.
1.c) 
 = f(a; b); a represents the color of the ball obtained in the �rst draw and b that of the second drawg.
1.d) 
 = [0;+1). We can choose a closed interval of R.
Remark 1.2.1. The choice of the fundamental set 
 depends on the case studied. For example,

in the dice game, we can assume that each die can land on any of its edges. In this case, we will have
additional possible outcomes.

Notion of Events

Consider a property � related to the outcome (result of the random experiment �). Each time � is
performed, there are two cases: the property � is realized or it is not. Thus, thanks to this property,
the fundamental set 
 is divided into two disjoint parts: on one side, the set E formed by the set of
points !; ! 2 
, representing results of � with the realization of the property �, and on the other side,
the complementary set E in 
 containing the points ! of 
 that correspond to results of � that do not
realize the property �. We say that the set E is the event related to the property �. We also say that
E is the event "E is realized". We immediately see that E (the complement of E in 
) is also an event,
referred to as "E is not realized".

1.3 Operations on Events

We extend the parallelism between set notions and probabilistic notions. In addition to the complemen-
tarity operation de�ned earlier, there are other important operations on the fundamental set 
 related
to the same experiment �.
a) Inclusion
Let A and B be two events of 
. If the experiment that realizes event A necessarily realizes event B,

we say that A implies B and write A � B.
b) Intersection
Let A and B be two subsets representing two events of 
. The event "A and B" is expressed by the

intersection of the subsets A and B of 
, called the intersection event of A and B, and we write: "A and
B" = A \B.
De�nition 1. If A \ B = ;, we say that events A and B are incompatible, i.e., their simultaneous

realization is impossible.
c) Union
If A and B are two events of 
, then the event "A or B" is the event represented by the union of the

two subsets A and B of 
. We write "A or B" = A [B.
Examples
1.4.a) Let�s revisit example 1.a) on the dice game and consider the following events:

� A = "the two recorded numbers are odd"

� B = "the two recorded numbers are even"

� C = "one of the recorded numbers is even and the other is odd"

Then we have:

� A = "at least one of the two recorded numbers is even"

� B = "at least one of the two numbers is odd"

� A \B = ;

� A [B = "the two recorded numbers are either even or odd"

� C = A [B = "one of the two numbers is even and the other is odd"
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� A = B [ C

� B = A [ C

� B � A

� A � B

� A \B = C

1.4.b) In example 1.b) (Heads or Tails game with 2 coins), the elementary event fPPg is the inter-
section of event A = fPF; PPg with event B = fPP; FPg. The event A [ B is: "heads at least once",
A [B = "tails twice" = fFFg.
We will call certain events subsets of 
, but not always all of them. However, if A and B are two

"interesting events", then we observe that A and A [ B are also interesting. We will therefore de�ne
spaces of events that are stable under complementation or countable union.
De�nition 2. Let 
 be a non-empty set. We call a �-algebra on 
 (or �-�eld) any set of subsets F

of 
 satisfying the following three conditions:

1. 
 2 F

2. 8A;A 2 F ) A 2 F (We say that F is stable under complementation)

3. For any sequence (An)n2N 2 FN,
S
n2NAn 2 F (We say that F is stable under countable union).

Examples
Let 
 be a non-empty set. F1 = f;;
g is a �-algebra called the trivial �-algebra; F2 = P(
), the

collection of all subsets of 
, is a �-algebra; �nally, if A � 
, F3 = fA;A; ;;
g is a �-algebra on 
.
Remark 1.3.1. If F is a �-algebra on 
, then ; 2 F . Moreover, F is stable under �nite union,

�nite intersection, countable intersection, di¤erence, etc. For example, let�s explain why F is stable
under countable intersection. Let (An)n2N 2 FN, we have

T
n2NAn =

S
n2NAn. Since, for all n,

An 2 F , condition (2) of the de�nition implies that An 2 F for all n. Condition (3) then implies thatS
n2NAn 2 F ; we can then apply point (2) again to obtain that

S
n2NAn 2 F .

De�nition 3. Let 
 be the fundamental set associated with the random experiment � and F a
�-algebra on 
. Then the pair (
;F) is called a Probabilizable Space. The elements of F are called
events, and those of 
 are called elementary events.
Examples
In examples 1.a), 1.b), and 1.c), we can take F = P(
) and directly obtain the probabilizable space

(
;P(
)).
Remark 1.3.2. We would always like to work with the �-algebra F = P(
). However, this is not

possible unless 
 is a �nite or countable set. If 
 = R, it is not possible to measure all subsets of R
without leading to a contradiction, and we limit ourselves to a class of subsets called the Borel �-algebra.
De�nition 4. We call the Borel �-algebra on R, denoted B(R), the smallest �-algebra, in the sense

of inclusion, containing all intervals of R.
This de�nition requires a comment: it is not obvious a priori that we can speak of "the smallest

�-algebra" containing the intervals. However, the de�nition makes sense because the intersection of any
family of �-algebras on 
 is still a �-algebra on 
. We can therefore consider the intersection of all
�-algebras on R containing the intervals, which by construction becomes "the smallest �-algebra".
De�nition 5. We call a complete system of events any sequence E1; E2; :::; En of events of F that

are pairwise incompatible and such that
Sn
i=1Ei = 
. The sets (Ei)1�i�n form a partition of 
.

1.4 Notion of Probability

De�nition 6. Let (
;F) be a probabilizable space and P an application from F to [0; 1]. P is a
probability on (
;F) if it satis�es the following conditions:

1. P(
) = 1
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2. For any sequence (An)n2N of elements of F (events) that are pairwise incompatible, i.e., An\Am = ;
for n 6= m, we have:

P

 [
n2N

An

!
=
X
n2N

P(An)

This property is called �-additivity.

De�nition 7. Let (
;F) be a probabilizable space and P a probability on this space. The triplet
(
;F ;P) is called a probability space or space of probabilities.
Remark 1.4.1. For any random experiment described by a probabilizable space (
;F), there are

many possible probabilities P that can be de�ned on this space. However, in practice, the choice of the
probability P is determined either by natural conditions or by experimental considerations.
Example 1.4.1. A die is rolled on a �at surface, and the result of interest is the number indicated

by the die. The fundamental set will typically be 
 = f1; 2; 3; 4; 5; 6g. We use as the �-algebra the set
P(
), and in the case of a fair die, we de�ne the probability law P such that each singleton has the same
probability, and it is easy to see that P(fig) = 1

6 for all i 2 
. It is straightforward to verify that this
completely determines P, and we then have, for any event A 2 P(
), P(A) = Card(A)

6 .
The de�nition of a probability leads to the following properties:
Proposition 1.4.1. Let (
;F ;P) be a probability space. If A;B are two events of F , then:

1. P(;) = 0

2. Additivity property: If A \B = ;, P(A [B) = P(A) + P(B)

3. P(B nA) = P(B)� P(A \B)

4. Monotonicity: If A � B, P(A) � P(B)

5. If A � B, P(B nA) = P(B)� P(A); in particular: P(A) = 1� P(A)

6. P(A [B) = P(A) + P(B)� P(A \B)

Proof.

1. To obtain P(;) = 0, it su¢ ces to take A0 = 
 and An = ; for n � 1 in the de�nition and apply
�-additivity.

2. Here, it also su¢ ces to take A0 = A, A1 = B, and An = ; for n � 2 in the de�nition and apply
�-additivity.

3. We write B = (B nA) [ (A \B) and use additivity: P(B) = P(B nA) + P(A \B).

4. and 5. For these two points, we apply point 3 for A � B.

5. We can write A [B = A [B nA and use additivity and point 3.

1.5 Some Important Probability Spaces

1.5.1 The Space 
 is Finite or Countable

As we have seen earlier, in this case, we usually assume that the �-algebra of events F is P(
), the set
of all subsets of 
, and thus the probabilizable space will be (
;P(
)). The probabilities that can be
de�ned on this space are then described by the following result:
Proposition 1.5.1. Let 
 be a �nite or countable set. Let ! 7! p! be an application from 
 to R+

such that: X
!2


p! = 1

For any A � 
, we then de�ne:
P(A) =

X
!2A

p!

Then (
;P(
);P) is a probability space (i.e., the application P de�ned by the last formula is a probability
on (
;P(
))). Conversely, any probability P on (
;P(
)) is of the previous type, with p! = P(f!g).
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The Equiprobable Case

Consider the particular case of Proposition 1.5.1 where 
 is �nite with Card(
) = n and the elementary
events are equiprobable (i.e., they all have the same probability). In this case, it is easy to determine
the probability P. Indeed, since all p! = P(f!g) are equal, it is easy to see that:

8! 2 
; p! =
1

Card(
)
=
1

n

Then, in this case, if A � 
, we have:

P(A) =
X
!2A

p! =
Card(A)
Card(
)

=
Number of favorable cases
Total number of cases

Thus, in this case, probability calculations reduce to counting problems. This probability P is called the
uniform probability on 
.
Example 1.5.1. Consider the random experiment � = "a die is rolled twice". Then 
 = f(i; j); 1 �

i � 6 and 1 � j � 6g. If the die is fair, then it is natural to say that the elementary events are
equiprobable, i.e., P (f(i; j)g) = 1

36 for all (i; j) 2 
. If A is the event "the sum of the recorded numbers
is equal to 6", then P (A) =

P
(i;j)2A P (f(i; j)g) = 5

36 , since here A = f(1; 5); (5; 1); (2; 4); (4; 2); (3; 3)g.
Remark 1.5.1. Attention: an impossible event has probability 0, a certain event has probability 1.

The converse is not true.
To show this more clearly, consider the experiment � = "we search for a hidden coin in the hands

of several people and stop when it is found". Then 
 consists of all sequences of the form (EEE:::ER)
where E denotes a failure in the attempt to �nd the coin and R denotes success. In the probabilizable
space (
;P(
)), we de�ne: For any ! 2 
 such that ! = EE:::ER| {z }

n+1

, P(f!g) = qnp, n 2 N with q = P(E)

and p = P(R); q = 1 � p (0 < p < 1 is the probability of �nding the coin in each attempt). It is easy
to see that:

P+1
n=0 q

np = p 1
1�q = 1. If A represents the event "the coin is found at the third attempt

at least", then P(A) =
P+1

n=2 q
np = q2. We note that the event (EE:::E:::E::::::) has a probability of 0

with respect to the de�ned probability, yet the possibility that this event occurs exists since it is part of
the set P(
) (but this event is experimentally unrealizable).

1.6 Conditional Probabilities and Independence

1.6.1 Conditional Probabilities

The notion of conditional probability allows us to take into account the information we have to update
the probability we assign to an event. In other words, we are in a probability space (
;F ;P), and let
A and B be two events, each with a non-zero probability of occurring. We are interested in the new
probability of one of them if we are assured that the other has occurred.
Example 1.6.1. Consider the random experiment � = "a fair die is rolled once". Then 
 =

f1; 2; 3; 4; 5; 6g, F = P(
), and P is the uniform probability. Let A: "the face is even" = f2; 4; 6g and B:
"the face is less than or equal to 3" = f1; 2; 3g. We know that P(A) = P(B) = 1

2 . But if we are assured
of the occurrence of A (i.e., the face is even), the probability of B seems to drop to 1

3 .
Now, we formally de�ne this concept to make it easily usable in calculations in a safe and e¢ cient

manner.
De�nition 11. Let (
;F ;P) be a probability space and B an event with a non-zero probability,

and let A be an event. We call the conditional probability of A given B, denoted P(AjB) or PB(A), the
number:

P(AjB) = P(A \B)
P(B)

Example 1.6.2. Mr. and Mrs. H have two children, one of whom is a girl. What is the probability
that the other is a boy? Same question if we assume that the girl is the eldest? To solve this problem
rigorously, we need to construct an appropriate probability space. We assume that a newborn is a boy or
a girl with equal probability and independently of the sex of their siblings. Thus, a family of two children
is in one of the four con�gurations of 
 = fFG;GF; FF;GGg, each with a probability of 1=4. In the
�rst case, we assume that the event A1 = fFG;GF; FFg is realized, and we seek the probability that
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there is a boy (and a girl) in the family, i.e., the conditional probability P(B1jA1) with B1 = fFG;GFg.
We obtain:

P(B1jA1) =
P(B1 \A1)
P(A1)

=
P(fFG;GFg)
PfFG;GF; FFg =

2=4

3=4
=
2

3

In the second case, we seek P(B2jA2) where A2 = fFG;FFg and B2 = fFGg. We obtain P(B2jA2) = 1
2 .

Proposition 1.6.1. Let (
;F ;P) be a probability space and B an event with a non-zero probability.
Then the application:

P(�jB) : F ! R+

A 7! P(AjB)

is a probability on F .
Proof.

1. We have P(
jB) = P(
\B)
P(B) = P(B)

P(B) = 1.

2. Let (An)n2N be a sequence of events of F that are pairwise incompatible, i.e., An \ Am = ; for
n 6= m. We have:

P

 [
n2N

AnjB
!
=
P
��S

n2NAn
�
\B

�
P(B)

=
P
�S

n2N(An \B)
�

P(B)

The events (An \B)n2N are themselves pairwise incompatible, and thus:

P

 [
n2N

AnjB
!
=
P
�S

n2N(An \B)
�

P(B)
=
X
n2N

P(An \B)
P(B)

=
X
n2N

P(AnjB)

Therefore, P(�jB) is a probability on F .

Proposition 1.6.2. (Formula of Compound Probabilities)
If A and B are two events with non-zero probabilities, then:

P(A \B) = P(AjB)P(B) = P(BjA)P(A)

Generalization: Let A1; A2; :::; An be n events with strictly positive probabilities. Then:

P(A1 \A2 \ ::: \An) = P(A1)P(A2jA1)P(A3jA1 \A2):::P(AnjA1 \A2 \ ::: \An�1)

Proof. Easy.
Proposition 1.6.3. (Formula of Total Probabilities)
Let B be an event such that P(B) > 0 and P(B) > 0. Then:

8A 2 F : P(A) = P(AjB)P(B) + P(AjB)P(B)

Generalization: Let B1; B2; :::; Bn be a complete system of events for 
 such that P(Bj) > 0 for j =
1; 2; :::; n. Then:

8A 2 F : P(A) =
nX
j=1

P(AjBj)P(Bj)

Proof. We have 8A 2 F : A = A \ 
 and on the other hand 
 =
Sn
j=1Bj , so:

P(A) = P(A \ 
) = P

0@A \
0@ n[
j=1

Bj

1A1A = P

0@ n[
j=1

(A \Bj)

1A
The events (A \Bj)j=1;n are pairwise incompatible, so:

P(A) =
nX
j=1

P(A \Bj) =
nX
j=1

P(AjBj)P(Bj)
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Stochastic Independence of Events

Independence of Two Events:
Idea: If A and B are two events, we say they are independent if the knowledge of the occurrence of one

does not change the probability of the occurrence of the other, i.e., P(AjB) = P(A) or P(BjA) = P(B).
To de�ne this notion even for events with zero probability, we have the following de�nition:
De�nition 12. Two events A and B are said to be independent if and only if:

P(A \B) = P(A)P(B)

We often obtain independent events when we repeat an experiment without the �rst experiment inter-
fering with the second. For example, this is the case when we play heads or tails twice. Here is another
example.
Example 1.6.4. If we roll a fair die twice, then 
 = E � E with E = f1; 2; 3; 4; 5; 6g. Since the die

is fair, all elementary events have the same probability. Let�s de�ne the following events:

� A = f(i; j); i is eveng

� B = f(i; j); j is eveng

� C = f(i; j); i+ j is eveng

It is clear that P(A) = P(B) = P(C) = 1
2 , and P(A \ B) = P(B \ A) = P(A \ C) = P(C \ A) =

P(B \ C) = P(C \B) = 1
4 . Therefore, the events A, B, and C are pairwise independent.

Remark 1.6.1. (Attention): Do not confuse incompatibility with independence of two events. If A
and B are two incompatible events, then they are independent only if P(A) = 0 or P(B) = 0. When
P(A) 6= 0 and P(B) 6= 0, they are always dependent.
Proposition 1.6.5. Let (
;F ;P) be a probability space, and A and B two events of F . Then we

have:

A and B independent, A and B independent, A and B independent, A and B independent

Proof. We only prove: A and B independent , A and B independent (the others are similar). We
have B = (A \B) [ (A \B), so:

P(B) = P(A \B) + P(A \B)

(since (A \B) and (A \B) are incompatible). Then:

A and B independent, P(A\B) = P(A)P(B), P(A\B) = P(B)�P(A)P(B) = P(B)(1�P(A)) = P(B)P(A), A and B independent

Independence of a Family of Events

We are in a probability space (
;F ;P), and let (Ai)i2I be a �nite or in�nite family of events of F .
Saying that these events are pairwise independent is equivalent to writing: P(Ai \Aj) = P(Ai)P(Aj) for
all i; j 2 I. However, there is also the possibility that (Ai)i2I are independent (we also say mutually
independent), which is given by the following de�nition:
De�nition 13. We say that the events (Ai)i2I are mutually independent if for any subset J � I,

we have:

P

 \
i2J
Ai

!
=
Y
i2J
P(Ai)

This condition is stricter than pairwise independence of events. Pairwise independence corresponds to
the restriction of this condition to subsets J of cardinality 2. The trap is the following: if A, B, C
are three independent events, then (A;B), (A;C), and (B;C) are pairs of independent events, but the
converse is false. That is, mutual independence of several events implies their pairwise independence,
but the converse is false, as shown by the following example:
Example 1.6.5. Consider the random experiment � = "a die is rolled twice" and the following

events:

� A1 = "the �rst roll is 1"
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� A2 = "the second roll is 1"

� A3 = "the same number appears in both rolls"

It is clear that the events A1, A2, and A3 are pairwise independent. Moreover, P (A1) = P (A2) =
P (A3) =

1
6 , and A1 \ A2 = A1 \ A3 = A2 \ A3 corresponds to "obtaining the number 1 in both rolls."

Thus,

P (A1 \A2 \A3) = P (A1 \A2) =
1

36

which is di¤erent from
P (A1)P (A2)P (A3) =

1

216

Therefore, the events A1; A2; and A3 are pairwise independent but not independent as a whole.
Proposition
If (Aj)j2I is a family of independent events and J is a �nite subset of I, then for any i =2 J , we have:

P (Ai j
\
j2J

Aj) = P (Ai)

In other words, knowledge of the occurrence of the events (Aj)j2J has no in�uence on the probability
of occurrence of the event Ai for i =2 I. This equality constitutes a second criterion of independence and
gives its meaning.
Remark
In an independent family of events (Aj)j2J , where J � I and J is �nite, we can replace some events

Aj with their complements �Aj without losing the property of independence.
Proof
The proof follows directly from the de�nition of independence of events.
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