University of Oum El Bouaghi Analysis 4 Academic year: 2024/2025 License 2 - Mathematics

Sheet of exercises $N^{\circ}1$

Exercise 1 Let $\|\cdot\|$ be a norm on a vector space E. Show that for all $x, y \in E$, we have the inequality

$$|\|x\| - \|y\|| \le \|x - y\|$$

Exercise 2 Let us recall the usual norms $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ on \mathbb{R}^n :

$$\|x\|_{1} = \sum_{i=1}^{n} |x_{i}|, \quad \|x\|_{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1/2}, \quad \|x\|_{\infty} = \max_{1 \le i \le n} |x_{i}|, \quad \text{for } x = (x_{1}, ..., x_{n}) \in \mathbb{R}^{n},$$

and use the notations B_1 , B_2 and B_∞ to denote the balls in \mathbb{R}^n corresponding to each of these norms.

1. Show that for all $x \in \mathbb{R}^n$, we have the inequalities

$$||x||_{\infty} \le ||x||_{2} \le ||x||_{1} \le n \, ||x||_{\infty} \, .$$

What can we conclude from this?

2. Show that for all r > 0 and all $a \in \mathbb{R}^n$, we have the following inclusions:

$$B_{\infty}(a, r/n) \subset B_1(a, r) \subset B_2(a, r) \subset B_{\infty}(a, r).$$

Exercise 3 Show that the set \mathbb{Q} of rational numbers is a subset of \mathbb{R} that is neither open nor closed.

Exercise 4 Graph the following parts of \mathbb{R}^2 and for each of them, say whether it is open, closed, or neither open nor closed.

$$A_1 = \{(x,y) \in \mathbb{R}^2 \ ; \ |x| = 1 \text{ and } |y| \neq 1\} \qquad A_2 = \{(x,y) \in \mathbb{R}^2 \ ; \ x+y \ge 0 \text{ and } x > 0\}$$

$$A_3 = \{(x, y) \in \mathbb{R}^2 \ ; \ x \ge 0 \text{ and } y = 0\}$$
 $A_4 = \{(x, y) \in \mathbb{R}^2 \ ; \ 1 - xy > 0\}$

 $A_5 = \{(x, y) \in \mathbb{R}^2 ; |x| \neq 1 \text{ and } |y| \neq 1\}$

Exercise 5 Determine whether each of the following parts of \mathbb{R}^2 is bounded or not, compact or not:

$$A_1 = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^4 = 1\}, \qquad A_2 = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^3 = 1\}.$$