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Chapter I: Numerical Solution of Nonlinear Equations with a Single Variable 

 

In this chapter, we will study three methods for solving nonlinear equations with one variable, 

also known as transcendental equations. Examples of these equations include: 

𝒇(𝒙) = 𝒔𝒊𝒏(𝒙) + 𝒙 = 𝟎, 𝒇(𝒙) = 𝒍𝒏(𝒙) − 𝟐𝒙 + 𝟑 = 𝟎. These equations do not have exact roots that can be 

calculated directly, which is why we resort to numerical methods to find approximate solutions. The 

calculated roots are as precise as desired, especially when computational resources are available. 

These numerical methods only allow the calculation of a single root on a well-chosen interval. 

Therefore, if the equation has more than one root, it is necessary to locate them in carefully chosen 

intervals and perform the calculation for each root separately. 

1. Locating the Roots of an Equation f(x) = 0 

Consider an equation f(x) = 0 for which we seek the solution on an interval [a, b]. We begin by 

making a rough sketch of the function on the given interval and then isolate each root in a subinterval 

that is as narrow as possible. Figure 1 shows the graph of a function f that intersects the x-axis at three 

points, which means that the equation f(x) = 0 has three roots. We denote the exact roots by 

𝒙̅𝟏, 𝒙̅𝟐 and 𝒙̅𝟑.  
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Figure 1.1: Illustration of root localization 

We observe that the function is continuous on each subinterval, and each subinterval: 

• Contains only one root such that 𝒙̅𝟏 ∈ [𝒂 , 𝒃 ], 𝒙̅𝟐 ∈ [𝒂′, 𝒃′]et 𝒙̅𝟑 ∈ [𝒂′′, 𝒃′′].  

• Satisfies the condition 𝒇(𝒂)𝒇(𝒃) < 𝟎,   𝒇(𝒂′)𝒇(𝒃′) < 𝟎  𝐞𝐭 𝒇(𝒂′′)𝒇(𝒃′′) < 𝟎. 

The form of the equation f(x) = 0 can be complicated. In this case, if possible, it can be decomposed 

into two simpler parts: g(x) = h(x). 

For example, the equation 𝒇(𝒙) = 𝐥𝐧(𝒙) − 𝒙𝟐 + 𝟐 = 𝟎, which is quite complicated to plot, can 

be decomposed into:  𝒈(𝒙) = 𝒉(𝒙)  with  𝒈(𝒙) = 𝐥𝐧(𝒙)  𝐚𝐧𝐝  𝒉(𝒙) = 𝒙𝟐 − 𝟐 

The graphs of g and h are very simple. The solution of f(x) = 0 is located at the intersection of g and h. 

Then, we project the intersection points onto the x-axis and locate the roots. We can easily verify the 

intervals found by calculating 𝒇(𝒂𝒊)𝒇(𝒃𝒊) < 𝟎 for each interval [ai, bi]. 
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Example: 

Consider the equation: 𝐥𝐧(𝒙) − 𝒙𝟐 + 𝟐 = 𝟎. Let's locate its roots. At this point, we do not know the 

number of roots of this equation. 

We plot the curve of the function: 𝐥𝐧(𝒙) − 𝒙𝟐 + 𝟐 = 𝟎. The intersections of the curve with the x-axis 

represent the roots of this function. 
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             Figure 1.2: Graph of function f          Figure 1.3: Graphs of functions f1 and f2 

We note that this equation has two roots (Fig. 2) that belong, for example, to the intervals [0.1, 0.5] 

and [1, 2].  

We can also rewrite the function f(x) = 0 in a simpler form, for example: 

ln(𝑥) − 𝑥2 + 2 = 0 ⇔ ln(𝑥) = 𝑥2 − 2   

or 𝑓1(𝑥) = 𝑓2(𝑥) ; with 𝑓1(𝑥) = 𝐥𝐧(𝒙) and 𝑓2(𝑥) = 𝒙𝟐 − 𝟐  

Then we plot these two functions (Fig. 3), which are easy to plot on the same axes. Their intersections 

represent the roots of f(x) = 0. 

2. Bisection or Dichotomy Method 

This is the simplest method and requires the most calculations. It is based on the special case 

(Bolzano's Theorem) of the intermediate value theorem, which states that: 

1. If f(x) is continuous on the interval [a, b], 

2. If f(a) and f(b) do not have the same sign, then there exists at least one real number c between 

a and b such that f(c) = 0 (since 0 is between f(a) and f(b)). 

2.1 Principle of the Method 

Once the roots are located, each in an interval, for the sake of simplicity of writing, let's take for 

example [a, b]: 

1. We divide the interval into two equal parts such that 𝒙𝟎 =
𝒂+𝒃

𝟐
. 

2. We obtain two subintervals [a, 𝒙𝟎] and [𝒙𝟎 ,b]. The root 𝑥̅ must necessarily belong to one of 

them. To verify, we calculate 𝒇(𝒂)𝒇(𝒙𝟎) and  𝒇(𝒙𝟎)𝒇(𝒃),. The negative product is the one 

that corresponds to the interval that contains the solution.  
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3. We denote the new interval by [𝒂𝟏, 𝒃𝟏] (Fig. 4) such that: 

𝒂𝟏 = {
𝒂 𝒔𝒊 𝒙̅  ∈ [𝒂, 𝒙𝟎]

𝒙𝟎 𝒔𝒊 𝒙̅  ∈ [𝒙𝟎, 𝒃]
        𝑒𝑡         𝒃𝟏 = {

𝒙𝟎 𝒔𝒊 𝒙̅  ∈ [𝒂, 𝒙𝟎]

𝒃 𝒔𝒊 𝒙̅  ∈ [𝒙𝟎, 𝒃]
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Figure 1.4: Illustration of the bisection method 

By repeating (iterating) the same method for the interval obtained, we will have the values: 

𝒙𝟏 =
𝒂𝟏 + 𝒃𝟏

𝟐
, 𝒙𝟐 =

𝒂𝟐 + 𝒃𝟐

𝟐
, … … … … , 𝒙𝒏 =

𝒂𝒏 + 𝒃𝒏

𝟐
 

The sequence  {𝒙𝒏}𝒏=𝟎,∞ converges to the solution 𝒙̅  of f(x) = 0 when n → ∞. 

2.2 Number of Divisions to Achieve a Given Precision ε 

Since each time we divide the interval into two equal parts, we have: 

𝒃𝟏 − 𝒂𝟏 =
𝒃 − 𝒂

𝟐
;  

𝒃𝟐 − 𝒂𝟐 =
𝒃𝟏 − 𝒂𝟏

𝟐
=

𝟏

𝟐

𝒃 − 𝒂

𝟐
=

𝒃 − 𝒂

𝟐𝟐
; 

𝒃𝟑 − 𝒂𝟑 =
𝒃𝟐 − 𝒂𝟐

𝟐
=

𝟏

𝟐

𝒃 − 𝒂

𝟐𝟐
=

𝒃 − 𝒂

𝟐𝟑
; 

………………………………………….……………… 

𝒃𝒏 − 𝒂𝒏 =
𝒃𝒏−𝟏 − 𝒂𝒏−𝟏

𝟐
=

𝟏

𝟐

𝒃 − 𝒂

𝟐𝒏−𝟏
=

𝒃 − 𝒂

𝟐𝒏
. 

 

 

Puisque  𝒙̅  ∈ [𝒂𝒏, 𝒃𝒏] = [𝒂𝒏, 𝒙𝒏] ∪ [𝒙𝒏, 𝒃𝒏] on a |𝒙𝒏 − 𝒙̅| ≤
𝟏

𝟐

𝒃−𝒂

𝟐𝒏 =
𝒃−𝒂

𝟐𝒏+𝟏   

 

𝑎𝑛 𝑏𝑛 𝑥𝑛 𝑥̅ 
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The difference |𝒙𝒏 − 𝒙̅|, which is the error of the calculation, must be less than a given precision ε, 

that is: 

|𝒙𝒏 − 𝒙̅| ≤ 𝜺 

Then, it suffices that          
𝒃−𝒂

𝟐𝒏+𝟏 ≤ 𝜺 

This gives            𝑛 ≥
𝐥𝐧 (

𝒃−𝒂

𝟐𝜺
)

𝐥𝐧 (𝟐)
 

 

• The number of divisions depends only on the length of the interval and the precision. 

• This method is unconditionally convergent. Its problem is that it is slow, which is why it is 

used to start other more elaborate methods. 

Example: 

Let's calculate the first root of the equation 𝐥𝐧(𝒙) − 𝒙𝟐 + 𝟐 = 𝟎 , which belongs to [0.1, 0.5], with a 

precision of 0.01. 

Let's calculate the number of divisions to make: 

𝒏 ≥
𝐥 𝐧(

𝒃−𝒂

𝟐𝜺
)

𝐥 𝐧(𝟐)
=

𝐥 𝐧(
𝟎.𝟓−𝟎.𝟏

𝟐∗𝟎.𝟎𝟏
)

𝐥 𝐧(𝟐)
= 𝟒. 𝟑𝟐  

We take n = 5 since n is an integer and greater than 4.32. 

𝒇(𝒂𝟏) = 𝒇(𝟎. 𝟏) = −𝟎. 𝟑𝟏𝟑   et    𝒇(𝒃𝟏) = 𝒇(𝟎. 𝟓) = 𝟏. 𝟎𝟓𝟕 

𝒙𝟏 =
𝒂𝟏 + 𝒃𝟏

𝟐
=

𝟎. 𝟏 + 𝟎. 𝟓

𝟐
= 𝟎. 𝟑𝟎;     𝒇(𝟎. 𝟑) = 𝟎. 𝟕𝟎𝟔 > 𝟎  thus  𝒂𝟐 = 𝟎. 𝟏  et   𝒃𝟐 = 𝟎. 𝟑 

𝒙𝟐 =
𝒂𝟐 + 𝒃𝟐

𝟐
=

𝟎. 𝟏 + 𝟎. 𝟑

𝟐
= 𝟎. 𝟐𝟎;     𝒇(𝟎. 𝟐) = 𝟎. 𝟑𝟓𝟏 > 𝟎 thus  𝒂𝟑 = 𝟎. 𝟏  et   𝒃𝟑 = 𝟎. 𝟐 

𝒙𝟑 =
𝒂𝟑 + 𝒃𝟑

𝟐
=

𝟎. 𝟏 + 𝟎. 𝟐

𝟐
= 𝟎. 𝟏𝟓;     𝒇(𝟎. 𝟏𝟓) = 𝟎. 𝟎𝟖𝟎 > 𝟎 thus  𝒂𝟒 = 𝟎. 𝟏  et   𝒃𝟒 = 𝟎. 𝟏𝟓 

𝒙𝟒 =
𝒂𝟒 + 𝒃𝟒

𝟐
=

𝟎. 𝟏 + 𝟎. 𝟏𝟓

𝟐
= 𝟎. 𝟏𝟐𝟓;     𝒇(𝟎. 𝟏𝟐𝟓) = −𝟎. 𝟎𝟗𝟓 < 𝟎 thus  𝒂𝟓 = 𝟎. 𝟏𝟓  et   𝒃𝟒 = 𝟎. 𝟏𝟐𝟓 

𝒙𝟓 =
𝒂𝟓+𝒃𝟓

𝟐
=

𝟎.𝟏𝟓+𝟎.𝟏𝟐𝟓

𝟐
= 𝟎. 𝟏𝟑𝟕𝟓;     𝒇(𝟎. 𝟏𝟐𝟓) = −𝟎. 𝟎𝟎𝟑 the solution is  𝒙̅ ≅ 𝒙𝟓 = 𝟎. 𝟏𝟑𝟕𝟓 

3. Method of Successive Approximations or Fixed Point Method 

Let g be a function defined on an interval [a, b]. The point 𝒙̅ which satisfies 𝒙̅ = g(𝒙̅) with 𝒙̅ ∈ 

[a, b] is called a fixed point of the function g. 

This method is based on the principle of the fixed point of a function. We write the equation 

f(x) = 0 in the form x = g(x), then we look for the fixed point 𝒙̅ of the function g. For this, we create 

the sequence 𝑥𝑛+1 = 𝑔(𝑥𝑛) ( n=0,1,2….) with 𝑥0 given by dichotomy for example. 

We start from  𝑥0  for  n = 0, we calculate  𝒙𝟏 = 𝒈(𝒙𝟎), then for  n = 1,  we calculate   𝒙𝟐 =

𝒈(𝒙𝟏),..., 𝒙𝒏+𝟏 = 𝒈(𝒙𝒏). Under certain conditions, the sequence {𝒙𝒏}𝒏=𝟎,∞ converges towards the 

solution  𝒙̅, fixed point of g and solution of the equation f(x)=0. 
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Example: 

Write the equation f(x) = 0 in the form x = g(x)  if  𝒇(𝒙) = 𝒙𝟐 + 𝟑𝒆𝒙 − 𝟏𝟐. 

We can write: 

• 𝒙 = 𝒈𝟏(𝒙) = 𝒙𝟐 + 𝟑𝒆𝒙 − 𝟏𝟐 + 𝒙 

• 𝒙 = 𝒈𝟐(𝒙) = √𝟏𝟐 − 𝟑𝒆𝒙 

• 𝒙 = 𝒈𝟑(𝒙) = 𝒍𝒏 (
𝟏𝟐−𝒙𝟐

𝟑
) 

To be able to choose the appropriate form of g for the calculation, a convergence criterion of this 

method must be verified. 

 

3.1 Convergence Criterion and Calculation Stop Criterion for the Method of Successive 

Approximations 

Let g be a derivable function defined from [a, b] to [a, b] such that (sufficient condition): 

|𝒈′(𝒙)| ≤ 𝒌 < 𝟏      ∀ 𝒙 ∈ [𝒂, 𝒃] 

Then the sequence {𝒙𝒏}𝒏=𝟎,∞ defined by   𝒙𝒏+𝟏 = 𝒈(𝒙𝒏) ( n=0,1,2….) converges independently of 

the value of 𝒙𝟎 to the unique fixed point 𝒙̅ of g. 

If several forms of g satisfy this condition, we will have several values of k. We choose the one with 

the minimum value of k. In practice, we calculate 𝒌 = 𝒎𝒂𝒙𝒙∈[𝒂,𝒃]|𝒈′(𝒙)| which must be less than one 

for the method to converge. 

We stop the calculations for this method when the absolute difference between two successive 

iterations is less than a certain given precision ε. 

|𝒙𝒏+𝟏 − 𝒙𝒏| < 𝜺  

 

Example: 

Find the first root of the equation  𝐥𝐧(𝒙) − 𝒙𝟐 + 𝟐 = 𝟎  which belongs to [0.1, 0.5] with a precision ε 

= 0.001. We write this equation in the form x = g(x) and verify the convergence conditions. We can 

write: 

  𝒙 = 𝒆𝒙𝟐−𝟐 = 𝒈𝟏(𝒙)  and 

 𝒙 = √𝒍𝒏(𝒙) + 𝟐 = 𝒈𝟐(𝒙) 

Let's verify the convergence condition for this method: 𝒌 = 𝒎𝒂𝒙𝒙∈[𝒂,𝒃]|𝒈′(𝒙)|. 

For 𝒙 = 𝒆𝒙𝟐−𝟐 = 𝒈𝟏(𝒙), we have 𝒌𝟏 = 𝒎𝒂𝒙𝒙∈[𝟎.𝟏,𝟎.𝟓]|𝒈𝟏′(𝒙)| = 𝒎𝒂𝒙𝒙∈[𝟎.𝟏,𝟎.𝟓] |𝟐𝒙𝒆𝒙𝟐−𝟐|. On the 

interval [0.1, 0.5], 𝒈𝟏′(𝒙) is strictly increasing, so the maximum value is 𝒌𝟏 = 𝒎𝒂𝒙𝒙=𝟎.𝟓 |𝟐 ∗

𝟎. 𝟓𝒆𝟎.𝟓𝟐−𝟐| = 𝟎. 𝟏𝟕𝟒 < 𝟏. Thus, this form converges. 

We write:       𝒙𝒏+𝟏 = 𝒈𝟏(𝒙𝒏) = 𝒆𝒙𝒏
𝟐−𝟐  (n=0,1,2,…..) 
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Let's start with x0 = 0.3, the midpoint of the given initial interval: 

We calculate  

 𝒏 = 𝟎, 𝒙𝟏 = 𝒈𝟏(𝒙𝟎) = 𝒆𝒙𝟎
𝟐−𝟐 = 0.148 

We calculate     |𝑥1 − 𝑥0| = 0.152 > 𝜀 ;  

                                            𝒏 = 𝟏, 𝒙𝟐 = 𝒈𝟏(𝒙𝟏) = 𝒆𝒙𝟏
𝟐−𝟐 = 0.138.  

We calculate    |𝑥2 − 𝑥1| = 0.01 > 𝜀  

              𝒏 = 𝟐, 𝒙𝟑 = 𝒈𝟏(𝒙𝟐) = 𝒆𝒙𝟐
𝟐−𝟐 = 0.138.  

We calculate    |𝑥3 − 𝑥2| = 0.00 < 𝜀,   

The solution is 𝒙̅ ≈𝒙𝟑 = 0.254. 

4. Newton-Raphson Method 

This is the most efficient and most used method. It is based on the Taylor series expansion. If f(x) is 

continuous and continuously differentiable in the neighborhood of 𝒙̅, the solution of f(x) = 0, then the 

Taylor series expansion around an estimate xn close to 𝒙̅ is written: 

𝑓(𝑥̅) = 𝑓(𝑥𝑛) +
(𝑥̅ − 𝑥𝑛)

1!
𝑓′(𝑥𝑛) +

(𝑥̅ − 𝑥𝑛)2

2!
𝑓′′(𝑥𝑛) + ⋯ 

If xn is a close estimate of 𝒙̅, then the square of the error  𝜺𝒏 = 𝒙̅ − 𝒙𝒏 and the terms of higher degrees 

are negligible. Knowing that 𝑓(𝑥̅) = 0, we obtain the approximate relation: 

𝒇(𝒙𝒏) + (𝒙̅ − 𝒙𝒏)𝒇′(𝒙𝒏) ≈ 𝟎 

Therefore,         𝒙̅ = 𝒙𝒏 −
𝒇(𝒙𝒏)

𝒇′(𝒙𝒏)
 

We can write the (𝒏 + 𝟏)𝒕𝒉 iteration approximating 𝒙̅ as: 

 𝒙𝒏+𝟏 = 𝒙𝒏 −
𝒇(𝒙𝒏)

𝒇′(𝒙𝒏)
   (n=0,1,2,…..)  

This sequence, if it converges, must converge towards the solution  𝒙̅ of f(x) = 0. We note that f'(x) 

must be non-zero. 

4.1 Convergence Criterion of the Newton-Raphson Method 

Let f be a function defined on [a, b] such that: 

i. 𝑓(𝑎)𝑓(𝑏) < 0 

ii. f'(x) and f''(x) are non-zero and maintain a constant sign on the given interval. 

4.2 Calculation Stop Criterion for the Newton-Raphson Method 

If the convergence condition is verified, the iterative process must converge. This means that each new 

iteration is better than the previous one. Therefore, we can say that if we have a precision ε, we stop 

the calculation when the absolute difference between two successive approximations is less than the 

given precision. That is: 

|𝒙𝒏+𝟏 − 𝒙𝒏| ≤ 𝜺 

If this condition is verified, we take 𝒙𝒏+𝟏 as the solution of f(x) = 0. 
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Example: 

Find the first root of the equation 𝒇(𝒙) = 𝐥𝐧(𝒙) − 𝒙𝟐 + 𝟐 = 𝟎  which belongs to [0.1, 0.5] with a 

precision ε = 0.0001. We calculate the first and second derivatives of f and verify the convergence 

conditions. 

We have: 𝒇′(𝒙) =
𝟏

𝒙
− 𝟐𝒙 > 𝟎, f'(x) is strictly decreasing and positive on the given interval.  

𝒇′′(𝒙) = −
𝟏

𝒙𝟐 − 𝟐, 𝒇′′(𝒙) < 𝟎 on the given interval.  

The convergence condition is verified. We therefore write: 

𝒙𝒏+𝟏 = 𝒙𝒏 −
𝒇(𝒙𝒏)

𝒇′(𝒙𝒏)
= 𝒙𝒏 −

𝐥𝐧(𝒙𝒏)−𝒙𝒏
𝟐+𝟐

𝟏

𝒙𝒏
−𝟐𝒙𝒏

,  (n=0,1,2,…..). 

Let's start with x0 = 0.3, the midpoint of the given initial interval: 

                                                 𝒏 = 𝟎, 𝒙𝟏 = 𝒙𝟎 −
𝐥𝐧(𝒙𝟎)−𝒙𝟎

𝟐+𝟐
𝟏

𝒙𝟎
−𝟐𝒙𝟎

= 𝟎. 𝟎𝟒𝟏𝟕     |𝑥1 − 𝑥0| > 𝜀 ;  

        𝒏 = 𝟏, 𝒙𝟐 = 0.0910. |𝑥2 − 𝑥1| > 𝜀  

        𝒏 = 𝟐, 𝒙𝟑 = 0.1285. |𝑥3 − 𝑥2| > 𝜀  

        𝒏 = 𝟑, 𝒙𝟒 = 0.1376. |𝑥4 − 𝑥3| > 𝜀  

        𝒏 = 𝟒, 𝒙𝟓 = 0.1379. |𝑥5 − 𝑥4| > 𝜀  

                    𝒏 = 𝟓, 𝒙𝟔 = 𝟎. 𝟏𝟑𝟕𝟗. The solution is 𝒙𝟔 = 𝟎. 𝟏𝟑𝟕𝟗  

Remarks: 

• The bisection method is unconditionally convergent. Its disadvantage is its slowness to obtain 

the solution with high precision. It can be used to start other more efficient methods. 

• The method of successive approximations is faster than the bisection method provided that it 

converges. 

• The Newton-Raphson method is the fastest. It allows obtaining very precise solutions in a 

reduced number of iterations. 

 


