Larbi Ben M'hidi-Oum El Bouaghi University

Faculty of Exact Sciences and Natural and Life Sciences

Departement of Mathematics and Computer Science

First year Licence

Introduction to probability and descriptive statistics

Series N°1: Bacis concepts and statistical vocabulary

Exercise 01: Classify each variable as qualitative (ordinal or nominol) or quantitative (discrete or continuous).

 X_1 : number of accidents in a city X_2 : eye color of people

 X_3 : Age of people in years X_4 : number of correct answers on a quiz

 X_5 : Genders of newborns in a hospital X_6 : scientific fields X_7 : Nationality of the workers in a city X_8 : level of studies

 X_9 : Amount of maney spent by families X_{10} : Lifetime of computers

 X_{11} : Academic ranks of teachers X_{12} : number of students in a classrooms

 X_{13} : Rating scale of products X_{14} : Speed of cars

(bad, good, or excellent)

Exercise 02: List all the measurements (observations) for the data set reprented by the following data frequency table:

Values x_i	31	32	33	34	35
Frequency n_i	1	5	6	4	2

Exercise $03 \star$: Construct the data frequency table for the following data set

Exercise 04 \star : Let the following data set :

Grouping these measures in the following classes: [80, 90[, [90, 100[, and so on.

Exercise 05: In a particular store, the weekly sales of a product for the last weeks are as follows:

- 1. What is the population of interest? and determine the population size.
- 2. What is the variable of interest? and determine its type.

3. Complete the following frequency table:

Number of products sold	Σ
Number of weeks	
Relative frequency $f_i = \frac{n_i}{n}$	
Percentage $p_i = f_i \times 100 (\%)$	
Increasing Cumulative Frequency	
ICF $N_{x=x_i} \uparrow$	
Decreasing Cumulative Frequency	
DCF $N_{x=x_i} \downarrow$	
Increasing Cumulative Relative	
Frequency ICRF $F_{x=x_i} \uparrow$	
Decreasing Cumulative Relative	
Frequency DCRF $F_{x=x_i} \downarrow$	

Remark: write the formula mathematic of ICF, DCF, ICRF, and DCRF.

Exercise 06: The revision time per week, in hours, of a group of students is given in increasing order as follows:

$$4 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 12 \quad 12 \quad 13 \quad 14 \quad 14 \quad 14 \quad 15 \quad 16 \quad 16 \quad 17 \quad 17 \quad 19 \quad 23$$

- 1. Determine the population studied, the population size, the variable studied, and its type.
- 2. Using Sturge's rule (or Yule's rule), grouping the measures of the previous data set.
- 3. Complete the table by calculating: Increasing Cumulative Frequency (ICF) and Increasing Cumulative Relative Frequency (ICRF).