Ministry of Higher Education and Scientific Research University of Larbi Ben M'Hidi, Oum El Bouaghi Faculty of Exact Sciences and Natural and Life Sciences Department of Mathematics and Computer Science

Computer Structure 1

Presented by: Dr. NASRI/A nasri.ahlem1988@gmail.com nasri.ahlem@univ-oeb.dz

2023-2024

Target audience

Prerequisite

Assessment method

1st year mathematics student + 1st year Common core Mathematics and computer science students .

Elementary mathematics.

Assessment method: Exam (60%), Continuous assessment (40%)

Dutline:	
Chapter 0	General Introduction and history: Definitions, History and General Architecture of a Computer
Chapter 1	Numeral system: Binary, Octal, Decimal, Hex
Chapter 2	Information representation : Binary coding, Character representation and Numbers representation.
Chapter 3	Binary Boolean algebra: Definition, Basic operators

Chapter 0: General Introduction and History

Outline:

0

Computer: is an automatic information processing machine that is capable of receiving, storing, processing, and outputting data and information under the control of a set of instructions, often referred to as programs or software.

Using computer programs, algorithms, or automated systems to perform tasks related to information processing without **direct** human intervention.

Definitions

History

General architecture of a computer

The Pascaline

Leibniz's arithmetic machine

John von Neumann machine

Hardware:

Definitions	History	General architecture of a computer Recap
Central Processing Unit (CPU)	Arithmetic and Logic Unit (ALU)	responsible for performing arithmetic and logical operations on data, which are essential for the computer to execute various tasks and processes.
	Control Unit	responsible for managing and coordinating the operations of the entire processor.
0	Registers	used to store and manage data that the CPU needs to access quickly during its operations
Central Memory	RAM	(Random Access Memory):Volatile Memory; can be read and written in a standard way
	ROM	(Read-Only Memory): Non-Volatile Memory, a memory that can only be accessed for reading.
		1

Definitions	History	General architecture of a computer Recap
Buses	Data Bus	used to transmit data between the CPU, memory, and input/output devices. It allows for the transfer of binary data in both directions (read and write).
	Address Bus	used to transmit memory addresses. It determines the location in memory where data needs to be read from or written to.
	Control Bus	transmits a number of synchronization signals which ensure that the processor and the various online peripherals operate harmoniously.
External Storage	An external h connects to t provides add Flash Drive,	hard drive is a portable, standalone storage device that the computer via USB, Thunderbolt, or other interfaces. It itional storage capacity. Ex: Solid-State Drive (SSD), USB Memory Cards and SD Cards and Cloud Storage, etc

Definitions	History	General architecture of a Recap
Peripherals	Input Peripherals	Keyboard, Mouse, Scanner,
	Output Peripherals	Monitor (or Display), Printer, Projector, Speakers,
	Input/Output Peripherals	Touchpad and Trackball, Modem, External memory

Software:

Definitions

Operating system	the first point of contact between the computer and the user (human). It is software that consists of a set of basic applications required for the proper operation of the hardware: keyboard, screen, printer, and so on. Ex: Windows, Linux, IOS, Android,
Apllications	a collection of programs that work together to give a service to the user. Microsoft Office, for example

Units of measurement:

-

Unit	Meaning			
Byte, bit	Capacity, size: mainly used for memories (cache, RAM, disks).			
Bit / second	Speed (bps) bit per second. used to calculate the speed of uploading.			
Hertz	Frequency : number of events per second. Used for CPU Bus Frequency, Screen Refresh Rate, RAM Bus Frequency.			

General architecture of a

computer

Units of measurement:

Units	value	in bytes	
Byte	8 bits	1	
Kb: kilo-Byte	1.024 Bytes	2^{10} bytes	
Mb: mega-Byte	1 024 KB	2^{20} bytes	
Gb: giga-Byte	1 024 MB	2^{30} bytes	
Tb: tera-Byte	1 024 GB	2^{40} bytes	

unit	value	in bps
Byte/second	8 Bps	2^{10} bps
Kbps: kilo-bit/ second	1 024 bps	2^{10} bps
Mbps: mega-bit/second	1 024 Kbps	2^{20} bps
Gbps: giga-bit/second	1 024 Mbps	2^{30} bps

unit	value	in Hertz
KHz: kilo-Hertz	1 000 Hz	10^3 Hz
MHz: mega-Hertz	1 000 KHz	10^6 Hz
GHz: giga-Hertz	1 000 MHz	10^9 Hz

Q1: What is a computer science ?

Q2: what are components of a computer ?

Q3: 1 GB= ? B / 10^{6} B =? MB

Ministry of Higher Education and Scientific Research University of Larbi Ben M'Hidi, Oum El Bouaghi Faculty of Exact Sciences and Natural and Life Sciences Department of Mathematics and Computer Science

Computer Structure 1

Presented by: Dr. NASRI/A nasri.ahlem1988@gmail.com nasri.ahlem@univ-oeb.dz

2023-2024

Chapter 1: Numeral systems

Introduction

Coding information => creating a **correspondence** between the (normal) **external** representation and its **internal** representation in the computer

Example of encoding of the character string "Ada b".

Numeral system is characterized by:

- A base B>1.
- Different coefficients or symbols \mathbf{a}_i such as: $0 \le \mathbf{a}_i < B$.

	Binary	Octal	Decimal	Hexadecimal
Base	2	8	10	16
coefficients	0,1	0,1,2,3,4,5,6,7	0,1,2,3,4,5,6,7,8,9	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

48.4

0

12

Exercise:

Here are the given numbers: 1010, 1020, 108141, 2A0GF00, 01AFB, CEE, BAC.

- Among these numbers, which ones can be the presentation of a number in base 2, 8, 10 or 16?
- Give the smallest base in which each number can be written?

Solution

	Base 2	Base 8	Base 10	Base 16	Smallest Base
1010	Yes	Yes	Yes	Yes	2
1020	No	Yes	Yes	Yes	3
108141	No	No	Yes	Yes	9
2A0GF00	No	No	No	No	17
01AFB	No	No	No	Yes	16
CEE	No	No	No	Yes	15
BAC	No	No	No	Yes	13

Polynomial Form:

$$N = (a_n a_{n-1} a_{n-2} \dots a_1 a_0)_B$$

strong weight low weight
$$N = a_n B^n + a_{n-1} B^{n-1} + \dots + a_1 B^1 + a_0 B^0 = \sum_{i=0}^{i=n} a_i B^i$$

Polynomial Form:

$$N = (\underbrace{a_{n}a_{n-1}a_{n-2}\dots a_{1}a_{0}}_{\text{Integer Part}}, \underbrace{a_{-1}a_{-2}\dots a_{-m}}_{\text{Decimal part}})_{B}$$

$$N = a_{n}B^{n} + a_{n-1}B^{n-1} + \dots + a_{1}B^{1} + a_{0}B^{0} + a_{-1}B^{-1} + a_{-2}B^{-2} + \dots + a_{-m}B^{-m} = \sum_{l=m}^{l=n} a_{l}B^{l}$$

Example:

strong weight low weight

 $8592 = 8x10^3 + 5x10^2 + 9x10^1 + 2x10^0.$

Converting from base B to decimal:

Method 1: Polynomial expansion

- Express the number in polynomial form using base b,
- then sum the various terms of the polynomial representation of the number.

Example:

 $(12)_3 = 1 \times 3^1 + 2 \times 3^0 = 3 + 2 = (5)_{10}$

 $(101101)_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 32 + 8 + 4 + 1 = (45)_{10}$

0

Conversion between different bases

Converting from base B to decimal:

Example:

 $(111,01011)_2 =$ $(1254,1)_8 =$ $(A5F,6)_{16} =$

Conversion between different bases

Converting from base B to decimal:

Example:

$$(111,01011)_{2} = 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} + 1 \times 2^{-5}$$

= 4+2+1+0+1/4+0+1/16+1/32= (7, 34375)₁₀
(1254,1)₈=
(A5F,6)₁₆=

 $b_{i_1j_2}^{(i_1j_2)} \overset{\circ}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset{i_2j_2}} \overset{\scriptscriptstyle}{\underset$

0
Conversion between different bases

Converting from base B to decimal:

Example:

$$(111,01011)_{2} = \mathbf{1} \times \mathbf{2^{2}} + \mathbf{1} \times \mathbf{2^{1}} + \mathbf{1} \times \mathbf{2^{0}} + \mathbf{0} \times \mathbf{2^{-1}} + \mathbf{1} \times \mathbf{2^{-2}} + \mathbf{0} \times \mathbf{2^{-3}} + \mathbf{1} \times \mathbf{2^{-4}} + \mathbf{1} \times \mathbf{2^{-5}}$$

= $\mathbf{4} + \mathbf{2} + \mathbf{1} + \mathbf{0} + \mathbf{1}/\mathbf{4} + \mathbf{0} + \mathbf{1}/\mathbf{16} + \mathbf{1}/\mathbf{32} = (7, \mathbf{3}\mathbf{4}\mathbf{3}\mathbf{75})_{10}$
 $(1254,1)_{8} = \mathbf{1} \times \mathbf{8^{3}} + \mathbf{2} \times \mathbf{8^{2}} + \mathbf{5} \times \mathbf{8^{1}} + \mathbf{4} \times \mathbf{8^{0}} + \mathbf{1} \times \mathbf{8^{-1}} = \mathbf{5}\mathbf{12} + \mathbf{128} + \mathbf{40} + \mathbf{4} + \mathbf{1/8} = \mathbf{(684, 125)}_{10}$
 $(\mathbf{A}\mathbf{5F}, \mathbf{6})_{8} =$

0

Conversion between different bases

Converting from base B to decimal:

Example:

$$(111,01011)_{2} = 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} + 1 \times 2^{-5}$$

= 4+2+1+0+1/4+0+1/16+1/32= (7, 34375)₁₀
$$(1254,1)_{8} = 1 \times 8^{3} + 2 \times 8^{2} + 5 \times 8^{1} + 4 \times 8^{0} + 1 \times 8^{-1} = 512 + 128 + 40 + 4 + \frac{1}{8} = (684,125)_{10}$$

$$(A5F,6)_{16} = 10 \times 16^{2} + 5 \times 16^{1} + 15 \times 16^{0} + 6 \times 16^{-1} = (2655,375)_{10}$$

Gillion a

0

Conversion between different bases

Converting from decimal to base B:

Converting Integer Part

Method 1: Successive Subtractions

- Begin by determining the nearest power of B to the decimal number, and then subtract this power from the number
- Then, repeat the same process with the result of the subtraction until reaching 0

- **Converting Integer Part**
- **Method 1: Successive Subtractions**

Example 1:

 $(5)_{10} = (?)_2$

$$5 - 4 = 1 - 1 = 0$$
; donc $5 = 4 + 1$

$$5 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (101)_2$$

Converting Integer Part

Method 1: Successive Subtractions

Example 2: $(45)_{10} = (?)_2$ 45 - 32 = 13 - 8 = 5 - 4 = 1 - 1 = 0; donc 45 = 32 + 8 + 4 + 1 $45 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (101101)_2$

Converting Integer Part

Method 1: Successive Subtractions

Example 3: $(555)_{10} = (?)_2$ 555 - 512 = 43 - 32 = 11 - 8 = 3 - 2 = 1 - 1 = 0; donc 555 = 512 + 32 + 8 + 2 + 1 $555 = 1 \times 2^9 + 0 \times 2^8 + 0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1$ $+ 1 \times 2^0 = (100010111)_2$

- **Converting Integer Part**
- Method 1: Successive Subtractions

Example 3:

$$(555)_{10} = (?)_9 = (?)_8 = (?)_{16}$$

It is not easy to find the first power of 8, 16 or 9 close to 555 !!!

This is the main disadvantage of this method.

0

Converting Integer Part

Method 2: Successive division

- Divide the whole number and each successive quotient by B until you obtain a null quotient.
- The sequence of remainders, in the reverse order of their obtaining, gives the representation of the decimal number in the base system B.

0

- **Converting Integer Part**
- Method 2: Successive division

Example 1:

Conversion between different bases

Converting from decimal to base B:

- **Converting Integer Part**
- Method 2: Successive division

Example 2:

Conversion between different bases

Converting from decimal to base B:

- **Converting Integer Part**
- Method 2: Successive division

Example 3:

Converting Decimal Part

Method 2: Successive multiplications

- Multiply the decimal part and the decimal parts of successive products by the base B until you obtain either a null decimal part or a repetition of one of the decimal parts.
- The finite, or infinitely repeated, sequence of the whole parts of the products obtained constitutes the representation of the decimal part in base b.

0

```
Converting Decimal Part
```

Method 2: Successive multiplications

Example1:

 $(0,6)_{10}=(?)_2$


```
Converting Decimal Part
```

Method 2: Successive multiplications

 $(0.325)_{10} = (0101001)_2 -$

 $(0.325)_{10} = (01010011001)_2$.

Example2:

 $(0.325)_{10}=(?)_2$

```
0.325 * 2 = 0.650
0.650 * 2 = 1.300
0.300 * 2 = 0.600
0.600 * 2 = 1.200
0.200 * 2 = 0.400
0.400 * 2 = 0.800
0.800 * 2 = 1.600
0.600 * 2 = 1.200
0.200 * 2 = 0.400
0.400 * 2 = 0.800
0.800 * 2 = 1.600
```

Conversion between different bases

Converting from base B1 to base B2:

dia a

0

Conversion between different bases

Converting from base B1 to base B2:

Example1:

 $(32,4)_5 = (?)_2$

 $(32,4)_5 = 3 \times 5^1 + 2 \times 5^0 + 4 \times 5^{-1} = (17,8)_{10} = (10001,1100 \dots)_2$

Converting from base B1 to base B2:

Case of bases B and B^k (binary=>octal=>hexadecimal)

binary=>octal (do bursts on 3 bits)

Converting from base B1 to base B2:

Case of bases B and B^k (binary=>octal=>hexadecimal)

binary=>hexadecimal (do bursts on 4 bits)

Hexa	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Example:

 $(A5F,6)_{16} = (1010 0101 1111, 0110)_2$

 $(1000101011)_2 = (0010 0010 1011)_2 = (22B)_{16}$

 $(1111000,01)_2 = (0111 1000, 0100)_2 = (78,4)_{16}$

Converting from base B1 to base B2:

Case of bases B and B^k (binary=>octal=>hexadecimal)

conversion	Method	Example	
$2 \Rightarrow 8$	3 binary digits \Rightarrow one octal digit	Binary $(101 ext{ 110 ext{ 01}} \\ \downarrow ext{ 0ctal ext{ (5 ext{ 6} ext{ 6} ext{ }}}$	$(11)_2$ \downarrow $(3)_8$
$8 \Rightarrow 2$	one octal digit \Rightarrow 3 binary digits	Octal (5 6 $\downarrow \qquad \downarrow$ Binary (<u>101 110</u> 0	$3)_8$ \downarrow $11)_2$
$2 \Rightarrow 16$	4 binary digits \Rightarrow one hexadecimal digit	Binary (1010 0110 \downarrow \downarrow Hexa (A 6	$\begin{array}{c} \underline{0011} \\ \downarrow \\ 3)_8 \end{array}$
$16 \Rightarrow 2$	one hexadecimal digit \Rightarrow 4 binary digits	Hexa (A 6 $\downarrow \qquad \downarrow$ Binary (<u>1010</u> <u>0110</u>	$3)_{16}$ \downarrow $\underline{0011})_2$

Converting a large decimal number to binary

To convert a large decimal number to binary, it's recommended to initially convert it to **octal** or **hexadecimal**, and then proceed to binary conversion => to reduce the number of operations (division or subtraction).

Example:

- (25693)₁₀ = (?????????)₂ - **Method 1:** Successive divisions by 2
- Method 2: Successive subtractions
- Method 3: Convert to base 8 first
- Method 4: Convert to base 16 first

Converting a large decimal number to binary

Example:

 $(25693)_{10} = (110010001011101)_2$

- Method 1: Successive divisions by $2 \Rightarrow 15$ division operations
- Method 2: Successive subtractions => 8 subtraction operations
- Method 3: Convert to base 8 first

 $(25693)_{10} = (62135)_8 = (110\ 010\ 001\ 011\ 101)_2$

Divisions successives par $8 \Rightarrow 5$ division operations.

- Method 4: Convert to base 16 first

 $(25693)10 = (645D)16 = (0110\ 0100\ 0101\ 1101)2$

Successive divisions by 16=> 4 division operations

0

Converting a large decimal number to binary

To convert a large decimal number to binary, it's recommended to initially convert it to **octal** or **hexadecimal**, and then proceed to binary conversion => to reduce the number of operations (division or subtraction).

In general:

Method	Successive divisions	Successive subtractions	Convert to base 8	Convert to base 16
Number of Arithmetic	Nombre des	Number of 1	Number of	Number of
Operations	bits	bits	bits per 3	bits per 4

-11

Introduction	B-based	Conversion between	Arithmetic Operations in
	system	different bases	Binary

Binary Addition

Whenever the result exceeds 1, it produces a carryover to the adjacent column with a higher weight.

A + B = 203 + 158 = 361 $R \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$ $A \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$ $B \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0$ $S \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1$

а	b	Sum	retainer	
0 0 1 1	0 1 0 1	0 1 1 0		
				43

Introduction	B-based	Conversion between	Arithmetic Operations in
	system	different bases	Binary

Binary Subtraction

If the digit being subtracted has a **lower** numerical value than the subtracting digit, we **borrow** from the **column of higher weight**.

Introduction	B-based	Conversion between	Arithmetic Operations in
	system	different bases	Binary

Binary Multiplication

Successive addition of the multiplican such that multiplication by 0 results in a result equal to 0 and multiplication by 1 results in the copying of the multiplicand.

Introduction	B-based	Conversion between	Arithmetic Operations in
muoduction	system	different bases	Binary

Binary Division

Successive subtraction of dividend divisor.

Arithmetic Operations in a numeral system with any base

Performing the four basic arithmetic operations in a numeral system with a base other than 10 or 2 can be challenging. In such cases, when we have two numbers N1 and N2 with different bases, B1 and B2 respectively, it's helpful to convert them to either decimal or binary before proceeding with the desired operation

Introduction	Duoca		Anumetic Operations in
S	ystem	different bases	Binary

Exercise:

We have two numbers **A** and **B** represented in three positions as follows:

A = $(a_3 a_2 a_1)_5$; B = $(b_3 b_2 b_1)_7$

1. What are the possible values for the coefficients a, b?

2. Knowing that $\mathbf{A} + \mathbf{B} = (138)_{9}$, $\mathbf{A} - \mathbf{B} = (200)_{6}$, Find the values of the coefficients \mathbf{a}_{i} , \mathbf{b}_{i} .

3. Transform A and B into binary then calculate A+B, A-B, A * (B/100), A/B.

Introduction	B-based	Conversion between	Arithmetic Operations in
	system	different bases	Binary

1.
$$a_i < 5 \text{ so, } a_i \in \{0, 1, 2, 3, 4\}$$
; $b_i < 7 \text{ so, } b_i \in \{0, 1, 2, 3, 4, 5, 6\}$;
2. $A+B=(138)_9$
The sum of these two equations gives : $2A=(138)_9+(200)_6$
 $A-B=(200)_6$

You must convert the two operands to the same base to perform the operation. The best choice is to convert them to a decimal base.

Introduction	B-based	Conversion between	Arithmetic Operations in
	system	different bases	Binary

$$(138)_{9} = 1 \times 9^{2} + 3 \times 9^{1} + 8 \times 9^{0} = (116)_{10}$$

$$(200)_{6} = 2 \times 6^{2} + 0 \times 6^{1} 2A = 116 + 72 \leftrightarrow 6 \times \overline{6}^{0} \times \overline{6}^{0} (94)_{10} = (72)_{10}$$

$$B = 116 - A \leftrightarrow B = (22)_{10}$$

 $\begin{cases} A = (94)_{10} = (??)_5 \\ B = (22)_{10} = (??)_7 \end{cases} \text{ By the method of successive divisions, we find: } \begin{cases} A = (334)_5 \\ B = (031)_7 \end{cases}$

By identification:
$$a_3 = 3$$
; $a_2 = 3$; $a_1 = 4$
 $b_3 = 0$; $b_2 = 3$; $b_1 = 1$

Introduction	B-based	Conversion between	Arithmetic Operations in
	system	different bases	Binary

3.
$$\begin{cases} A = (94)_{10} = (1011110)_{2} \\ B = (22)_{10} = (10110)_{2} \end{cases}$$

$$\begin{cases} A = (94)_{10} = (101110)_{2} \\ (10110)_{2} = (10110)_{2} \end{cases}$$

$$\begin{cases} A = (94)_{10} = (101110)_{2} \\ (10110)_{2} = (101110)_{2} \end{cases}$$

$$\begin{cases} A = (94)_{10} = (1011110)_{2} \\ (10110)_{2} = (101110)_{2} \end{cases}$$

$$\begin{cases} A = (94)_{10} = (1011110)_{2} \\ (10110)_{2} = (101110)_{2} \end{cases}$$

$$\begin{cases} A = (94)_{10} = (1011110)_{2} \\ (10110)_{2} = (101110)_{2} \\ (10110)_{2} = (10110)_{2} \end{cases}$$

A	1	0	1	1	1	1	0
							
В	0	0	1	0	1	1	0
=	1	0	0	1	0	0	0

Introduction	B-based	Conversion between	Arithmetic Operations in		
	system	different bases	Binary		

A					1	0	1	1	1	1	0
*											
B/100							8	1	0	1,	1
=											
					¹¹ 1	00	11	11	1	1	0
+		87 10		01	0	1	1	1	1	0	
+			11 <mark>0</mark>	0	0	0	0	0	0		
+	1	11	0	1	1	1	1	0			
=	1	0	0	0	0	0	0	1	0	1,	0

Introduction	B-based	Conversion between	Arithmetic Operations in		
	system	different bases	Binary		

Ministry of Higher Education and Scientific Research University of Larbi Ben M'Hidi, Oum El Bouaghi Faculty of Exact Sciences and Natural and Life Sciences Department of Mathematics and Computer Science

Computer Structure 1

Presented by: Dr. NASRI/A nasri.ahlem1988@gmail.com nasri.ahlem@univ-oeb.dz

2023-2024

Chapter 2: Internal Data Representation

Binary Coding

Types of information processed by the computer:

Numbers, instructions, images, animated image sequences, sounds, etc, always represented in binary form.

Advantages of binary:

- easy to achieve technically using bistables (systems in two equilibrium states: the existence or not of an electrical voltage +5V=1 and 0V=0).
- fundamental operations that are simple to perform, in the form of logic circuits.

The computer's memory is limited => the bit sequence which represents the information is also limited

Internal Data Representation number of bits on which we must represent this data

1. The reflected binary code (GRAY code)

- **Gray code**, also known as **reflected binary code**, is a binary numeral system with a unique property that distinguishes it from traditional binary representation.
- In Gray code, adjacent numbers differ by **only one bit**, which makes it particularly useful in applications where you want to minimize errors during transitions between values (Karnaugh's tables, input output circuit, optical encoders and analog/digital converters, ...)

1. The reflected binary code (GRAY code)

Principle:

- 1. Start with the leftmost (most significant) bit of the Gray code, which is the same as the leftmost bit in the binary representation.
- 2. Move from left to right through each bit in the Gray code.
- 3. For each bit, calculate the corresponding bit in the binary representation using the following instructions:
 - If the current bit in the Gray code is 0, keep the previous binary bit as it is.
 - If the current bit in the Gray code is 1, flip the previous binary bit.
- 4. Continue this process until you have converted all bits from Gray code to binary code.

1. The reflected binary code (GRAY code)

Example: We want to represent the first 8 numbers using the gray code.

	c	b	a	Binary Representation	Decimal Representation
	0	0	0	000	0
irror level 1	1	0	0	001	1
	1	1	0	010	2
	0	1	0	011	3
irror level 2	0	1	1	100	4
	1	1	1	101	5
	1	0	1	110	6
Gray Representation	0	0	1	111	7

1. The reflected binary code (GRAY code) Converting GRAY to Binary

(110101) Gray = ?

 $(110101) _{Gray} = (100110)2$

Converting Binary to GRAY

 $(110101)_2 = ? (110101)_2 = (101111)_{Gray}$

2. The Decimal Coded Binary code(DCB code)

Principle:

This is the most used code. Its principle is based on associating a binary code with each decimal digit on 4 bits.

Example:

 $(512)_{10} = (1000000000)_2 = (0101\ 0001\ 0010)_{\text{DCB}}$

nbr of digit in decimal = 10

nbr of numbers we can represented using 4 bits = $2^4 = 16$

There are 6 unused configurations -

Decimal	DCB	
0	0000	-
1	0001	1
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
1	1010	
/	1011] g
1	1100	1 St
1	1101	Ĕ
1	1110] ĭ
1	1111	

3. The code exceeds three

Principale:

Exceeds three code is very similar to the DCB code. Its principle is based on associating each decimal digit with its binary equivalent plus 3.

Example:

 $(512)_{10} = (1000000000)_2 = [(0101 + 0011) (0001 + 0011) (0010 + 0011)]_{\text{Exceeds 3}}$ $= (1000 \ 0100 \ 0101)_{\text{Exceeds 3}}$

1. Representation of Unsigned Integers:

An unsigned integer is represented by its binary equivalent and the non-significant bits are replaced by zeros.

Example: On 8-bit sequences

8 is represented by 00001000 138 is represented by 10001010 Evaluation:

The evaluation of a number represented in binary is done by converting the representation from the binary system to the decimal system (polynomial expansion) **Range of values:**

The range of numbers that can be represented in n-bit binary is [0, 2ⁿ-1]

The problem is how to tell the machine that a number is positive or negative???????

An **unsigned integer** is represented by a machine like its **equivalent in binary** (as seen in the previous section).

On the other hand, to represent a signed integer, there are several methods:

- 1. Signed absolute value
- 2. One's Complement
- 3. Two's Complement
- 4. With Excess

() | () () () 1

representation of +1 on 4 bits

0

2. Representation of Signed Integers:

A- Signed absolute value

A Signed integer is represented on n bits by the binary equivalent of its absolute value on (n-1) bits and the nth bit represents the sign of the number. By convention, the positive sign is represented by 0 and the negative sign is represented by 1.

2. Representation of Signed Integers: A- Signed absolute value

Evaluation: A $(a_n, a_{n-1}, a_{n-2}, \dots, a_2, a_1, a_0)$ is the SAV representation of N in decimal. The evaluation of N is done according to the following algorithm:

If a_n=0 then (* the number is positive *) N ← + Decimal Conversion (A) Else (*the number is negative*) a ← 0 N ← - Decimal Conversion (A) End

2. Representation of Signed Integers:
A- Signed absolute value
Range of values:
The range of numbers that can be represented in n-bit binary is [-(2ⁿ⁻¹-1), +2ⁿ⁻¹-1]

Example: On 3 bits, we have The range of numbers $-3 \le N \le +3$ $-(4-1) \le N \le +(4-1)$ $-(2^2 -1) \le N \le +(2^2 - 1)$ $-(2^{(3-1)} - 1) \le N \le +(2^{(3-1)} - 1)$

NB: we have 2 representation of 0 (-0 and +0)!

SAV Value	Binary Value	Decimal Value
000	+ 00	+0.
001	+ 01	+1/
010	+ 10	12
011	+ 11	+3
100	- 00	
101	- 01	-1
110	- 10	- 2 [°]
111	- 11	- 3

2. Representation of Signed Integers:B- One's Complement

- A positive integer is represented by its binary equivalent on (n-1) bits the nth bit represents the sign of the number which is 0.
- A negative integer is represented by its **one's complement**. We call the one's complement of a number N the number N' such that: $N+N'=2^{n}-1$ where n is the number of bits of the representation of the number N.

Example:

N=1010. Its One's complement is: N'= $(2^4 - 1)$ -N N'= $(16-1)_{10}$ - $(1010)_2$ = $(15)_{10}$ - $(1010)_2$ = $(1111)_2$ - $(1010)_2$ = $(0101)_2$ = $(5)_{10}$

2. Representation of Signed Integers:B- One's Complement

NB: To find the one's complement of a number, simply
1. First write the absolute value of the number (|N|) on n bits.
2. Then invert all the bits of this number: if the bit is at 1 put 0 in its place and if the bit is at 0 put in its place a 1.

CA1(CA1(N)) = N

2. Representation of Signed Integers:B- One's Complement

Evaluation: A $(a_n, a_{n-1}, a_{n-2}, \dots, a_2, a_1, a_0)$ is the 1C representation of decimal N. The evaluation of N is done according to the following algorithm:

If a_n=0 then (* the number is positive *) N ← + Decimal Conversion (A) Else (*the number is negative*) A ← 1C(A) N ← - Decimal Conversion (A) End

2. Representation of Signed Integers: B- One's Complement Range of values: The range of numbers that can be represented in n-bit binary is [-(2ⁿ⁻¹-1), +2ⁿ⁻¹-1]

Example: On 3 bits, we have The range of numbers [-3,+3] $-3 \le N \le +3$ $-(4-1) \le N \le +(4-1)$ $-(2^2 -1) \le N \le +(2^2 - 1)$ $-(2^{(3-1)} - 1) \le N \le +(2^{(3-1)} - 1)$

NB: we have 2 representation of 0 (-0 and +0)!

1C Value	Binary Value	Decimal Value
000	+000	+0
010 011	+010 +011	+2 +3
100	-011	-3
101 110	-010	-2
111	-000	-0

2. Representation of Signed Integers: C- Two's Complement

- A positive integer is represented by its binary equivalent on (n-1) bits the nth bit represents the sign of the number which is 0.
- A negative integer is represented by its **tow's complement**. We call the one's complement of a number N the number N' such that: N'= 1C(N)+1 where n is the number of bits of the representation of the number N.

N=1010 on 4 bits CA1(N)=0101 CA2(N) = **CA1(N)+1** = 0101 + 1 = 0110

2. Representation of Signed Integers: C- Two's Complement

NB: To find the one's complement of a number, simply
1. First write the absolute value of the number (|N|) on n bits.
2. Next, traverse the bits of this number starting from the lowest weight bit to the first 1 and invert the other bits that come after.

CA2(CA2(N)) = N

2. Representation of Signed Integers: C- Two's Complement

Evaluation: A $(a_n, a_{n-1}, a_{n-2}, \dots, a_2, a_1, a_0)$ is the 2C representation of decimal N. The evaluation of N is done according to the following algorithm:

If a_n=0 then (* the number is positive *) N ← + Decimal Conversion (A) Else (*the number is negative*) A ← 2C(A) N ← - Decimal Conversion (A) End

Exercise:

Use these different codings to code the following relative integers on 8 bits (if possible):

Decimal	Binary	Gray	DCB	exceeds 3	SAV	C1	C2	
5						1		
-5						子黨		X
32								
-17								Za -
222							0	

2. Representation of Signed Integers: D- Representation with excess

- Every number N is represented by the binary equivalent of the characteristic C such that: C = N + Excess.
- The excess **E** is chosen so that the sum C is always positive.
- In general, this representation is used to present the exponents of real numbers (IEEE 754 standard) with Excess = 2^{n-1} -1.

Exemple: On 8 bit sequences: $E=2^{7}-1=127$ **10** is represented by $10+127=(137)_{10}=(10001001)_{2}$ **-10** is represented by $-10+127=(117)_{10}=(01110101)_{2}$

2. Representation of Signed Integers: D- Representation with excess

Evaluation:

The evaluation of a number represented with excess is done using the following relationship:

 $C = N + 2^{n-1} - 1 \leftrightarrow N = C - 2^{n-1} + 1$

- A real number is made up of two parts: **the integer part** and the **fractional part** (the two parts are separated by a decimal point).
- The problem is how to tell the machine the position of the decimal point.??
- There are two methods for representing real numbers:
 - Fixed point: the position of the point is fixed
 - Floating point: the position of the point changes (dynamic)

.....

.....

....

3. Representation Real numbers:

A- Fixed point:

In this representation, the Integer Part (IP) is represented on **e** bits and the Fractional Part (FP) on **f** bits, in addition one bit is used for the sign.

			1				
	Sign 1 bit	Integer Part (IP) e bits	Fractional Part (FP) f b	its		11,
Example	e: if e=3 and f	=2 we will have the follo	owing values:	Binar	v valu	es	HE1
				Sign	IP	FP	Decimal values
NB: In th	is representati	on the values are		0	000	00	+ 0,0
limit	ed and we do	not have a large		0	000	01	+ 0,25
		0	000	10	+ 0,5		
prec	181011 !!			0	000	11	+ 0,75
				0	001	00	+ 1,0
					8 3	1 1	

3. Representation Real numbers: B- Floating point:

Each real number can be written as follows: $(-1)^{S} * (0,M) * B^{E}$

Where S: Sign (positive = 0, negative = 1), M: Mantissa, B: Base, E: Exponent.

Example: $15.6 = + 0.156 * 10^{+2} = (-1)^{0} * 0.156 * 10^{+2}$ $-(110,101)_{2} = -(0,110101)_{2} * 2^{+3} = (-1)^{1} * (0,110101)_{2} * 2^{+3}$ $(0,00101)_{2} = +(0,101)_{2} * 2^{-2} = (-1)^{0} * (0,101)_{2} * 2^{-2}$

B- Floating point: Standard IEEE 754 (1985)

In this presentation, the real number can be written as follows:

$$(-1)^{S} \times (0, M) \times 2^{E} = (-1)^{S} \times (1, M_{n}) \times 2^{E}$$

S (1 bit) E (e bits) M_n (m bits)

Mn: Mantissa normalized to base 2 with a hidden bit. Indeed, the decimal point is placed after the most significant bit at 1, for example: 11.01 => 1.101 => Mn= 101 - E: Exponent coded with excess 2^{e-1} -1

B- Floating point: Standard IEEE 754 (1985)

	32 Bits	64 Bits
Number of Sign bits (S)	1	1
Number of exponent bits (Eb)	8	11
Number of bits of the mantissa (Mn)	23	52
Exponent coding	with Excess $2^7 - 1 = 127$	with Excess $2^{10} - 1 = 1023$
		0

B- Floating point: Standard IEEE 754 (1985)

Example: Code the number $N = (35.5)_{10}$ according to IEEE 754-32:

B- Floating point: Standard IEEE 754 (1985)

Example: Code the number $N = (35.5)_{10}$ according to IEEE 754-32:

- Converting N to binary: N = 100011.1
- Exponential form of N: N = 1.000111×2^5
- Sign bit S = 0

 - Exponent coding: $C = E + 127 = 5 + 127 = 132 = (10000100)_2$
- Overall representation: (0 10000100 000111000000000000000)

3. Representation of Characters:

The characters include : upper and lower case alphabetical letters (A..Z, a..z), numbers (0..9), punctuation (?,!, ..), special characters(%, @,..) and other symbols (>, ;, ..). A- ASCII Code : (American Standard Code for Information Interchange)

ASCII code of 'A' is $(100\ 0001)_2 = (41)_{16} = (65)_{10}$

h	2
L H	
L	F
S	3
0	3
TD	2
CON	200
UUS	IDCI

-	1111	191	101	162	163	164	145	100	167	170	ŧ	172	E	141	175	111
-	CASE	a.	0	-	N I		=	*	N N	×	۲ ۲	2 4	-	-	-	*
0	ER.	11 12	1 1	1 1	1 L 2	11 12	11 II 12 II 13 II 14 III	11 14	1 11	1 1	11 14 14	2 B	n 12	1 22	1 12	1 R
	TOW		67	.0	U	-0-	e	-	60	-		-	-		ε	-
-	1	8 9	19	# Q	8 12	100	101 89	30	11 is	101	105	100 1	tur GB	10	601 (19	110
-	10	00	11	122	8	121	125	130	121	10	1	3	3	10	135	121
0	CASI	α.	a	8	S		2	>	3	×	\succ	Z				
0	E	N 00	10 10	8 2	N 12	A 7	8 8	36 36 10	N2 201	10 26	86 11	11	8 7	14 00	11 22	16 16 16 16 16 16 16 16 16 16 16 16 16 1
0	ddn	0	A	8	U	0	ш.	LL.	9	Ŧ	_	_	×		2	Z
14 N.	-	8 9	12 7	8 7	G 7	5 7	8 7	R #	F 4	R: 3	F \$	a \$	F 9	12 Q	p 3	2 H
		0	1	3	2	13	2	8	1	2	- F	E	P	12	È	12
100	SJ SH	0	S 100	5	ς Υ	4	ഹ	9	7	~	6	(144) 100	***	×	11	~
0	MBC	40 20	40 40	41 32	41 33	2 5	42 II 14	2 R 2	22 23	26 25 25	11 20	20 28 20 28	50 51 31	54 90 25 35	61 35	62 56 35
	SY	0	1000	-	-====	-	~	æ		-	-	*	+	04	331	
0		8 8	8 8	a a	8 1	N K	15 1 1	a 7	R 15	9 8	⊊ 8	а 11	5 H	¥ 8	\$ A	19 F
П		E B	1 21	2 22	33	4	×	N	B	N		В	^s	7	315	35
0	ğ	Ы	B	20	8	20	NA	S	日	CA	E	SU	ES	FS	S	RS
0 0	NTP	16	11 11	2 12	3 11	20	12 12 14	22	11 12	24 21 21	11 12	10 58 11	11 11	28	10 11	20
•	8	E	공	X	X	01	No	X	펎	SS	÷	14.		H-	er.	0
0		2 0	S	S -	л п.	<u> </u>	е н	e A	ь +			1 7	= _ e	2 0	n a	3 a
13	19	0	- 22	0	24	0	1	0	1	0	1	0	1	0	1	
P2	1TS 142	•	0		++	0	0	\rightarrow		0	Ū.	-	-	-	0	-
19	8 2	0	0	0	0	1				•	0	3 9	0	0.000	1	100 M
	A						۰ T		. ~ .							-

Ministry of Higher Education and Scientific Research University of Larbi Ben M'Hidi, Oum El Bouaghi Faculty of Exact Sciences and Natural and Life Sciences Department of Mathematics and Computer Science

Computer Structure 1

Presented by: Dr. NASRI/A nasri.ahlem1988@gmail.com nasri.ahlem@univ-oeb.dz

2023-2024

Chapter 3: Boolean Algebra

Introduction

- To design and create such a circuit, we must have the mathematical model of its function performed. The mathematical model used is that of Boolean algebra (named after the English mathematician George Boole 1915 1864).
- George Boole developed an algebra for manipulating logical propositions using mathematical equations where the statements TRUE and FALSE are represented by the values 1 and 0, while that the AND and OR operators become algebraic multiplication and addition operators.
- Boolean algebra concerns the logic of binary systems.
A- Logical Variable:

A logical (or Boolean) variable is a variable that can take either the value 0 or the value 1. Generally, it is expressed by a single uppercase alphabetical character (A, B, S, etc.)

B- Logical Operators:

In Boolean Algebra, there are three basic operators: NOT, AND, OR.

C-Logic Gates:

A logic gate is an elementary electronic circuit enabling the function of a logic operator to be carried out.

D-Logic Function

It takes one or more Boolean variables as input, according to which it returns a Boolean value (1 or 0) as output. It is presented either by its logical expression or by its truth table.

D1- Logical Expression:

It is a combination of several variables via logical operators as well as parentheses. **D2- Truth table:**

If a logical function has **n logical variables** then the truth table has:

- (n+1) columns: n input variables and one output variable
- 2ⁿ lines: In fact, the function has 2ⁿ Boolean value combinations.

Definitions and Conventions

D-Logic Function

Exemple: The function F of three variables A, B and C

Logical Expression: F(A, B, C) = AB + C

Truth table of 4 columns and 8 rows

Α	В	С	F(A,B,C)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Definitions and Conventions

Logical Operators

1- Basic Operators:

All functions can be expressed using the three basic operators: NOT, AND and OR.

1.1- The NOT Operator (Negation):

NOT is a unary operator (a single variable) which has the role of inverting the value of a logical variable.

Representation	Truth ta	able	logical gate
$F(A) = Not(A) = \overline{A}$	A Ā	-	
	0 1		
	1 0		

Definitions and Conventions

Logical Operators

1.2- And Operator (Conjunction)

It is defined as follows: a AND b is TRUE if and only if a is TRUE and b is TRUE. This law is also denoted by a point '.'

Representation	Truth table	logical gate
$F(A,B) = A*B = A \cdot B = AB$	ABAB000010100111	A A . B

Definitions and Conventions

Logical Operators

1.3- Or Operator (Disjunction)

It is defined as: a OR b is TRUE if and only if a is TRUE or b is TRUE. In particular, if a is TRUE and b is also TRUE, then a OR b is true. This law is also denoted by a plus (+).

Representation	Truth table			logical gate			
F(A,B)= A+B	A 0 0 1 1	B 0 1 0 1	A+B 0 1 1 1	A B 1			

Definitions and Conventions

Logical Operators

1.4- Algebraic Properties:

- In the definition of the AND, OR operators above, we just gave the basic definition with only two logical variables.

However, the AND operator (respectively OR) can produce the logical product (resp. the sum) of several logical variables (Example: A *B * C * D / A + B + C + D).

- To evaluate a logical expression (or function), we start by evaluating the sub-expressions between the parentheses, then the complement (NO), then the logical product (AND) and finally the logical sum (OR).

Associativity	(a+b) + c = a + (b+c) = a + b + c
	As with normal operations,
	some parentheses are unnecessary:
	(a.b).c = a.(b.c) = a.b.c
Commutativity	a + b = b + a The order is irrelevant:
	a.b = b.a
Distributivity	a.(b+c) = a.b + a.c
	a + (b.c) = (a+b)(a+c)
Idempotence	$a + a + a + a + a \cdots + a = a$
-	$a.a.a.a.a.\ldots .a = a$
Identity	a + 0 = a
	a.1 = a
Absorption	a + 1 = 1
	a.0 = 0
Simplification	$a + \overline{a}.b = a + b$
	$a.(\overline{a}+b) = a.b$
Redundancy	$a.b + \overline{a}.c + b.c = a.b + \overline{a}.c$
Complimentary	$a = \overline{\overline{a}}$
	$a.\overline{a} = 0$
	$a + \overline{a} = 1$
	2247 11 2247 583

Definitions and Conventions

Logical Operators

1.4- Algebraic Properties:

Example: $F(A,B) = \overline{AB} (A + B)$

А	В	A+B	AB	ĀB	F(A,B)
0	0	0	0	1	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

Definitions and Conventions

Logical Operators

2- Compound Operators: 2.1- The XOR Operator (Exclusive OR)

The XOR operator is 1 if one and only one entry is 1.

Representation	Truth table			logical gate
$F(A, B) = \overline{AB} + A\overline{B} = A \oplus B$	A	A	A⊕B	
	0	0	0	A
	0	1	1	
	1	0	1	B
	1	1	0	
				-

Definitions and Conventions

Logical Operators

2- Compound Operators: 2.2- The NAND Operator (NOT AND)

The NAND operator is 0 if all input variables are 1.

Representation	7	Fruth t	able	logical gate
$\mathbf{F}(\mathbf{A},\mathbf{B})=\overline{A\ast B}=\mathbf{A}\uparrow\mathbf{B}$	A	Α	A↑B	
	0	0	1	A A A
	0	1	1	
	1	0	1	B
	1	1	0	

Definitions and Conventions

Logical Operators

2- Compound Operators:2.3- The NOR Operator (NOT OR)

The NOR operator is equal to 1 if all input variables are 0.

Representation	Truth tableAA $A \downarrow B$ 001010100110			logical gate
$\mathbf{F}(\mathbf{A},\mathbf{B}) = \overline{\mathbf{A} + \mathbf{B}} = \mathbf{A} \downarrow \mathbf{B}$	A	A	$A \downarrow B$	
	0	0	1	$A \qquad A \downarrow B$
	0	1	0	
	1	0	0	В
	1	1	0	

NB:

Two logical functions are identical if only if:

- We can show via the properties of Boolean algebra that their logical expressions are identical.
- Their truth tables are identical.
- **Example:** prove that $A \oplus B = \overline{AB} (A + B)$

Definitions and Conventions

Logical Operators

Example: prove that $A \oplus B = \overline{AB} (A + B)$

1st using truth table:

A	В	$A \oplus B$	A + B	AB	ĀB	\overline{AB} (A + B)
0	0	0	0	0	1	0
0	1	1	1	0	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	0

Definitions and Conventions

Logical Operators

Example: prove that $A \oplus B = \overline{AB} (A + B)$

2nd using algebraic Properties

 $\overline{AB}(A+B) = (\overline{A} + \overline{B})(A+B)$ $= \overline{A}A + \overline{A}B + \overline{B}A + \overline{B}B$ $= 0 + \bar{A}B + \bar{B}A + 0$ $= \overline{AB} + \overline{BA}$ $= \overline{AB} + A\overline{B}$ $= A \oplus B$

3- Logical Functions:

- 3.1- Logigram
 - The logigram (or logic diagram) is the translation of the logical function into an electronic diagram.
 - The principle consists of replacing each logical operator with the logic gate that corresponds to it

Example: $F_2(A, B, C) = AB + \overline{B}C$

3- Logical Functions:

3.2- extracting the logical expression of a function from its truth table For a logical function with n variables:

- A minterm is the product of n variables (which can be complemented)
- A maxterm is the sum of n variables (which can be complemented) From the truth table, the logical expression is defined either as:
- The sum of minterms where a minterm is determined for each value of the function equal to 1.
- The product of the maxterms where a maxterm is determined for each value of the function equal to **0**.

Example:

Definitions and Conventions

Logical Operators

Logical Fonctions

Example:

A	В	С	F	Type of term	Expression of term		
0	0	0	0	Maxterm	A + B + C		
0	0	1	0	Maxterm	$A + B + \bar{C}$		
0	1	0	0	Maxterm	$A + \overline{B} + C$		
0	1	1	1	Minterm	Ā B C		
1	0	0	0	Maxterm	$\bar{A} + B + C$		
1	0	1	1	Minterm	A B C		
1	1	0	1	Minterm	A B C		
1	1	1	1	Minterm	A B C		
F = Sun F (A, B, F (A, B,	n of Min C) = $\overline{A} B$ C) = $\sum (0$	term C + A B C 11,101,110	+ <i>A B Ē</i> +),111) =	- $A B C \rightarrow$ 1st canonical numerical form	form (Disjunctive)		
$\mathbf{F} = \mathbf{Pr}$	oduct of	Maxterm					
F (A, B,	$F(A, B, C) = (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(\overline{A} + B + C) \rightarrow 2$ nd canonical form (Conjunctive)						
F (A, B,	$C) = \prod(0$	00,001,01	(0, 100) =	$\prod(0, 1, 2, 4) \rightarrow$ numerica	l form		

3- Logical Functions:3.3- Canonical Form

We call the canonical form of a function the form where each term of the function includes all the variables. There are two canonical forms:

- First Canonical Form: Disjunctive Form: which is the sum of the minterms; A disjunction. This form is the most used form.
- Second Canonical Form: Conjunctive Form: which is the product of the maxterms: a conjunction.

Note here that the first and second canonical forms are equivalent.

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.3- Canonical FormTransition to canonical forms:

We can always reduce any logical function to one of the canonical forms.

To do, we add the missing variables in the terms which do not contain all the variables (the non-canonical terms).

This is possible using the rules of Boolean algebra:

- Multiply a term with an expression that is worth 1
- Add to a term with an expression that is $\boldsymbol{0}$
- Subsequently distribute

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions: 3.3- Canonical Form Transition to canonical forms: Example: $F_2(A, B, C) = \overline{AB\overline{C} + \overline{A}B}$

Conjonctive Form

 $F_{2C}(A, B, C) = \overline{AB\overline{C} + \overline{A}B}$ $= (\overline{AB\overline{C}})(\overline{AB})$ $= (\overline{A} + \overline{B} + C)(A + \overline{B})$ $= (\overline{A} + \overline{B} + C)((A + \overline{B}) + C\overline{C})$ $= (\overline{A} + \overline{B} + C)(A + \overline{B} + C)(A + \overline{B} + C)$

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions: 3.3- Canonical Form Transition to canonical forms: Example: $F_2(A, B, C) = \overline{AB\overline{C} + \overline{A}B}$ Disjonctive Form

 $F_{2D}(A, B, C) = \overline{AB\overline{C} + \overline{A}B}$ $= (\overline{AB\overline{C}})(\overline{AB})$ $= (\overline{A} + \overline{B} + C)(A + \overline{B})$ $= \overline{A}A + \overline{A}\overline{B} + \overline{B}A + \overline{B}\overline{B} + CA + C\overline{B}$ $= 0 + \overline{A}\overline{B} + A\overline{B} + \overline{B} + AC + \overline{B}C$ $= A\overline{B}(C + \overline{C}) + A\overline{B}(C + \overline{C}) + (A + \overline{A})\overline{B}(C + \overline{C}) + A(B + \overline{B})C + (A + \overline{A})\overline{B}C$

 $= \overline{ABC} + \overline{ABC}$

 $= \bar{A}\bar{B}C + \bar{A}\bar{B}\bar{C} + A\bar{B}C + A\bar{B}\bar{C} + ABC$

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.4- Simplification

The canonical forms of a logical function are a correct definition of the function, but they can be simplified to:

- Express the same function with as few terms and as simple as possible.
- Perform the function with fewer electronic elements (logic gates).

Simplification can be achieved through either method:

- The properties of Boolean algebra (Algebraic method).
- Map Karnaugh (graphic method).

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.4- SimplificationThe properties of Boolean algebra (Algebraic method).

- $F_1(A,B) = \overline{A}B + AB$
- $F_2(A,B) = (A+B)(A+\overline{B})$
- $F_3(A,B) = A + AB$
- $F_4(A,B) = A(A+B)$

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.4- SimplificationThe properties of Boolean algebra (Algebraic method).

- $F_1(A,B) = \overline{AB} + AB = (\overline{A} + A)B = 1B = B$
- $F_2(A,B) = (A+B)(A+\overline{B}) = AA + A\overline{B} + BA + B\overline{B} = A + A\overline{B} + AB + 0 = A + A(\overline{B} + B) = A + A = A$
- $F_3(A,B) = A + AB = A(1+B) = A = A$
- $F_4(A,B) = A(A+B) = AA + AB = A + AB$

Definitions and Conventions

Logical Operators

3- Logical Functions: **3.4-** Simplification Map Karnaugh (graphic method)

The Karnaugh map is a graphical tool for simplifying a logic equation or the process of going from a truth table to a corresponding circuit.

cd

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.4- SimplificationMap Karnaugh (graphic method)

Method:

- Join adjacent "1" in groups of 1, 2, 4, 8,... etc. (2ⁿ, n=0,1,2,... etc)
- The equation of the circuit is given by the sum of the products of the variables which do not change state in each grouping.
- Then, in the previous examples: $S_1 = \overline{b}$ and $S_2 = \overline{b}.d + \overline{a}.\overline{b}.d$

NB: An output S is obtained by the groupings of zeros.

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.4- Simplification

Exemple:

Definitions and Conventions

Logical Operators

Logical Fonctions

 $F(A, B, C, D, U) = \overline{A} \overline{B} + A.B.D.\overline{U} + \overline{A}.C.\overline{D}.U + A.\overline{B}.D.U$

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.4- SimplificationExample with 5 variables:

		E = 0						E = 1		
AB	00	01	11	10		AB	00	01	11	10
CD						CD				
00					54 	00	8 2.			
01						01				
11						11	к			
10						10				
				Map w	ith 5 variables	8				

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.4- SimplificationExample with 6 variables:

		$\mathbf{EF} = 0$	0	
AB CD	00	01	11	10
00				
01				
11		1		
10				

AB	00	01	11	10
CD				
00				
01				
11				
10	80 			

		$\mathbf{EF} = 1$	1				$\mathbf{EF} = 1$
AB	00	01	11	10	CD	AB 00	01
0					00		
					01		
					11		
.0					10		

Definitions and Conventions

Logical Operators

Logical Fonctions

3- Logical Functions:3.4- Study of a logic function

Steps :

2 Canonical Forms

3

Simplification (algebric or Karnaugh map)

4 logigram drawing

(diagram of logic gates)

General Introduction

Exercise 1:

- 1. Provide a diagram illustrating the internal structure of a computer.
- 2. How is information presented in memory?
- 3. What is the basic unit of measurement for information?
- 4. What is the difference between RAM and ROM?
- 5. What is the difference between RAM and auxiliary memory?
- 6. How long does it take to download a 1 MB file using a 1 Mb/s ADSL connection?
- 7. Classify the following devices according to their type (input, output and input/output):

Keyboard, floppy disk, screen, DVD engraver, DVD player, scanner, hard disk, mouse, printer, modem, flash disk, digital screen, microphone, speaker.

Exercise 2:

Specify the units of measurement in the following data sheet:

- Intel CoreTMi5 (frequency 3.40, cache memory 4
- Windows 8.1 64
- RAM 4 with frequency of 1333
- Hard disk 850, transfer rate 4
- Integrated network card (LAN) : 100
- ADSL connection 2
- WebCam: resolution 12

Exercise 3:

Convert the following units:

- 2,4 GHz=Hz.
- 4,7 GB = MB =..... KB =..... Bytes.
- 512 kb/s =..... kB/s =Bytes/s.
- 2 TB =GB =.....MB.
- 1Mb/s =..... kB/s =.....bytes/s.

Exercise 4:

Yanis owns a flash disk with a storage capacity of 8 GB. He has saved three files on his flash disk with sizes of 1.87 GB, 4096 MB, and 300 MB, respectively. Yanis then lent his flash disk to Anya, requesting her to copy a 2 GB film onto it.

Is it possible for Anya to copy the film to the flash disk? Why or why not?

Solution TD0

Exercise 1:

1	Recall the computer architecture (refer to the course) for a reminder.
2	Information is presented in memory as binary digital data, often represented in bits (0 and 1). These bits are organized into groups called bytes (or cells). Each cell has a unique address which allows direct access to any cell.
3	The basic unit of measurement for information is the bit (short for binary digit)
4	RAM: volatile memory; used for storing data and programs that are actively being used by Operating System, programs and applications; read/write memory; usually has a higher capacity compared to ROM. ROM: non-volatile memory; used for storing essential instructions and data such as a computer's BIOS or start instructions; read-only memory
5	Auxiliary memory (secondary storage), such as hard drives and SSDs, is used for long-term storage of data, programs, and files . non-volatile storage . RAM is much faster . RAM has a limited capacity compared to auxiliary memory Auxiliary memory is an external removable memory.
6	Time = Size/Speed = 1MB/1Mb/s = 1×8Mb 1Mb/s = 8s
7	Input: Keyboard, PlayerDVD, scanner, mouse, microphone. Output: screen, printer, speaker. Input/Ouput: floppy disk; DVD engraver, hard disk, modem, flash disk, digital screen.

Keyboard, floppy disk, screen, DVD engraver, DVD player, scanner, hard disk, mouse, printer, modem, flash disk, digital screen, microphone, speaker.

Exercise 2:

Specify the units of measurement in the following data sheet:

- Intel CoreTMi5 (frequency 3.40 **GHz**,cache memory 4 **MB**
- Windows 8.1 64 bits
- RAM 4 **GB** with frequency of 1333 **MHz**
- Hard disk 850 GB, transfer rate 4 MB/s
- Integrated network card (LAN) : 100 Mb/s
- ADSL Connection 2 Mb/s

University of Larbi Ben M'Hidi, Oum El Bouaghi Department of Mathematics and Computer Science

• WebCam: resolution 12 Mega Pixel.

Exercise 3:

Convert the following units:

- 2,4 GHz= 2.4 × 10³ MHz= 2.4 × 10⁹ Hz.
- 4,7 GB = 4.7×2^{10} MB = 4.7×2^{20} KB = 4.7×2^{30} Bytes.
- $512 \text{ kb/s} = 512/8 \text{ kB/s} = 64 \times 2^{10} \text{ Bytes/s}.$
- $2 \text{ TB} = 2 \times 2^{10} \text{ GB} = 2 \times 2^{20} \text{ MB}.$
- $1 \text{Mb/s} = 1 \times 2^{10}/8 \text{ kB/s} = 1024/8 \text{ kB/s} = 128 \text{ kB/s} = 128 \times 1024 \text{ bytes/s}.$

Exercise 4:

Used space : 1,87 GB+ 4096 MB + 300 MB = 1,87+4,096+0,3 GB = 6.266 GB Free space : 8 GB - 6,266 GB= 1,734 GB.

By comparing the free space with the Film size, we deduce that Anya cannot copy the film to the flash disk (2GB > 1,734 GB).

Numeral systems

Exercise 1:

Here are the given numbers: 1010, 1020, 108141, 2A0GF00, 01AFB, CEE, BAC.

- Among these numbers, which ones can be the presentation of a number in base 2, 8, 10 or 16?

- Give the smallest base in which each number can be written?

Exercise 2:

Make the following conversions:

Base 10	Base 2	Base 8	Base 16	X	Base X
555				9	
120,25				4	
14,5				3	
35,05				7	
	101101			14	
	111.01011			6	
	101.101			3	
	1011011			4	
		37		5	
		1254,1		13	
		276,52		4	
			A2	11	
			A5F,6	12	
			B2CD,2A	7	
				5	32.4
				3	12
				12	24
				9	45
Exercise 3:

Determine the bases in which the following numbers are expressed:

Basex	Base 10	x
34	22	
75	117	
1110101	117	
24	14	
13	7	
70	56	
1111	40	
402	102	
135	75	
1023	75	

Exercice 4:

Find the solution to the following riddles:

- I am triple the value of 7 in decimal and I am an octal number. Who am I ?
- I am a binary number. If you convert me to decimal, I am double 11. Who am I ?
- I am a palindrome in base 3. If you convert me to decimal, I'm 130. What is my palindrome representation in base 3?

Exercise 5:

Determine the digits (x,y) such that the number N is written:

- (x2y) in base 6 and (3x2) in base 5.
- Give the number N in the decimal system.

Exercise 6:

A clever hen mastered counting using a base 5 numeral system. She employed five symbols: C,

T, D, E, and O. Each symbol corresponded to a specific numerical value.

- What numerical value did she give to each of these five letters, knowing that to name the decimal number **41346460**; She said "**COT COT CODET**".

Exercise 7:

We have two numbers A and B represented in three positions as follows:

$$A = (a3 a2 a1)_5;$$
 $B = (b3 b2 b1)_7$

1. What are the possible values for the coefficients ai, bi?

2. Knowing that $\mathbf{A} + \mathbf{B} = (138)_9$, $\mathbf{A} - \mathbf{B} = (200)_6$, Find the values of the coefficients ai, bi.

3. Transform A and B into binary then calculate A+B, A-B, A * (B/100), A/B.

Exercise 8:

Perform the following operations:

 $(1011.1101)_{2} + (11.1)_{2} = (?)_{2}$ $(1011.1101)_{2} / (11.1)_{2} = (?)_{2}$ $(1010.0101)_{2} - (110.1001)_{2} = (?)_{2}$ $(110)_{2} * (1.01)_{2} = (?)_{2}$ $(91B)_{16} + (6F2)_{16} = (?)_{8}$ $(3.6)_{8} * (4.5)_{8} = (?)_{4}$ $(340)_{5} - (32)_{7} = (?)_{6}$

Exercise 9:

In a personal computer, the usable memory words have the following hexadecimal addresses: from 0000 to 01FF and from 4001 to 7E00. What is the total decimal number of usable memory words?

Exercise 10:

Use these different codings to code the following relative integers on 8 bits (if possible) then on 16 bits:

Decimal	Binary	SVA	C1	C2	Excess
1					
-1					
-99					
-24					
127					
-128					
405					

Exercise 11: Code the following real numbers according to the IEEE standard 754-32:

 $N1 = (-6.53125)_{10}$ $N2 = (-32.625)_{10}$ $N3 = (-11.8561)_{10}$ N4 = N1-N2

Exercice 12:

Convert to decimal the following binary number represented in floating point (IEEE754-32 bits)

Sign	Exponent	Mantissa
1	1000 0010	1010 1000 0000 0000 0000 000
1	1000 0100	1001 0100 0000 0000 0000 000
0	1000 1010	1111 1000 0000 0000 0000 000

By: Dr. A-NASRI

Solution TD2

	Base 2	Base 8	Base 10	Base 16	Smallest Base
1010	Yes	Yes	Yes	Yes	2
1020	No	Yes	Yes	Yes	3
108141	No	No	Yes	Yes	9
2A0GF00	No	No	No	No	17
01AFB	No	No	No	Yes	16
CEE	No	No	No	Yes	15
BAC	No	No	No	Yes	13

Exercise 1: (Already seen in cours, it's just a reminder)

Exercise 2:

Make the following conversions:

Base 10	Base 2	Base 8	Base 16	X	Base X
555	1000101011	1053	22B	9	676
120,25	1111000.01	170,2	78,4	4	1320.1
14,5	1110.1	16.4	E,8	3	112.11111
35,05	100011.00001	43.031	23,0C	7	50.0231
45	101101	55	2D	14	33
7.34375	111.01011	7.274	7,58	6	11.20213
5.625	101.101	5.5000	5,A	3	12.12
91	1011011	133	5B	4	1123
31	11111	37	1F	5	111
684.125	1010101100.001	1254,1	2AC.2	13	408.18

190,656	10111110.1010	276,52	BE,A8	4	2332.222
162	10100010	242	A2	11	138
2655,375	101001011111.011	5137.3	A5F,6	12	1653.46
45773,164	1011001011001101.001	131315.124	B2CD,2A	7	250310.1101
17,8	10001.110011	21.63146315	11.CCCCCC	5	32.4
5	101	5	5	3	12
28	11100	34	1 C	12	24
41	101001	51	29	9	45

Exercise 3:

Determine the bases in which the following numbers are expressed:

 $1 - (34)_x = 3^*x^1 + 4^*x^0 = 22 => 3x + 4 = 22 => 3x = 18$ **X=6**

2- The same process is applied for the rest ...

Base x	Base 10	х
34	22	6
75	117	16
1110101	117	2
24	14	5
13	7	4
70	56	8
1111	40	3
402	102	5
135	75	7
1023	75	4

Exercice 4:

1- 7*3= 21; Convert 21 to octal: $(21)_{10}=(25)_8$

So, the octal number that is triple the value of 7 in decimal is 25.

2- 11×2=22; Convert 22 to binary: $(22)_{10}=(10110)_2$ So, the binary number that is double 11 in decimal is 10110.

3- convert 130 from decimal to ternary (base 3) \Rightarrow 11211 (palindrome).

Exercise 5: $(N)_6 = x2y = x \times 6^2 + 2 \times 6^1 + y \times 6^0 = 36x + 12 + y$ $(N)_5 = 3x2 => 3 \times 5^2 + x \times 5^1 + 2 \times 5^0 => 75 + 5x + 2$ 36x+12+y = 75+5x+2 => 36x-5x=77-12-y => 31x = 65-yy takes values from 0 to 4 =>y = 0 => x? $y=1 => x^{2}$ y=2 => x?y=3 => x=2y=4 => x? $(N)_6 = x2y => (223)_6 = (87)_{10}$ Exercise 6: Convert 41346460 from decimal to base 5: $(41346460)_{10} = (410 \ 410 \ 41320)_5 = (COT \ COT \ CODET)_5$ **C=**4 **O=1** T=0 D=3 E=2

Exercise 7: (Already seen in cours, it's just a reminder)

1.
$$a_i \le 5$$
 so, $a_i \in \{0, 1, 2, 3, 4\}$; $b_i \le 7$ so, $b_i \in \{0, 1, 2, 3, 4, 5, 6\}$;

2.
$$\begin{cases} A+B=(138)_{9} \\ A-B=(200)_{6} \end{cases}$$
 The sum of these two equations gives : $2A=(138)_{9}+(200)_{6}$

You must convert the two operands to the same base to perform the operation. The best choice is to convert them to a decimal base.

$$(138)_{9} = 1 \times 9^{2} + 3 \times 9^{1} + 8 \times 9^{0} = (116)_{10}$$

$$(200)_{6} = 2 \times 6^{2} + 0 \times 6^{1} + 0 \times 6^{0} = (72)_{10}$$

$$B = 116 + 72 \leftrightarrow A = (94)_{10}$$

$$B = 116 - A \leftrightarrow B = (22)_{10}$$

$$\begin{cases} A = (94)_{10} = (??)_5 \\ B = (22)_{10} = (??)_7 \end{cases} \text{ By the method of successive divisions, we find: } \begin{cases} A = (334)_5 \\ B = (031)_7 \end{cases} \\ B = (031)_7 \end{cases}$$

By identification: $a_3 = 3$; $a_2 = 3$; $a_1 = 4$
 $b_3 = 0$; $b_2 = 3$; $b_1 = 1$

3.
$$\begin{cases} A = (94)_{10} = (1011110)_{2} \\ B = (22)_{10} = (10110)_{2} \end{cases}$$

A	1	¹ 0	¹ 1	¹ 1	¹ 1	1	0	A	1	0	1	1	1	1	0
+								-							
В	0	0	1	0	1	1	0	В	0	0	1	0	1	1	0
=	1	1	1	0	1	0	0	=	1	0	0	1	0	0	0

		в														
1 0	1	1	0	. 0	1 (0 0	0									
	1 1	1 1 1	0	. 0	1 () 1	. 1									
			8	A						1	0	1	1	1	1	0
				*												
				B,	/100								1	0	1,	1
				=								_				
										111	00	1	11	1	1	0
				+					01	0	1	1	1	1	0	
				+				110	0	0	0	0	0	0		
				+	2	1	11	0	1	1	1	1	0		•	
				=	9	1	0	0	0	0	0	0	1	0	1,	0

Exercise 8:

 $(1011.1101)_2 + (11.1)_2 = (1111.0101)_2$ $(1010.0101)_2 - (110.1001)_2 = (11.11)_2$ $(110)_2 * (1.01)_2 = (111.1)_2$ $(91B)_{16} + (6F2)_{16} = (100D)_{16} = (10015)_8$ **Exercise 9:**

Decimal	Binary	SVA	C1	C2	Excess
1	00000001	00000001	00000001	00000001	1000000
-1	00000001	1 0000001	11111110	11111111	1111110
-99	01100011	11100011	10011100	10011101	00011100
-24	00011000	10011000	11100111	11101000	01100111
127	01111111	01111111	01111111	01111111	01111111
-128	00000001000000	10000001000000	1111111101111111	1111111110000000	1011101001110001

Exercice 10: Example:

13.25

Method

- Integer part : $13 \Rightarrow 1101$
- Decimal part : $0, 25 \Rightarrow 0, 01$
- $(13.25)_{10} = (1101, 01)_2$
- Normalization : $1101, 01 \times 2^0 <=> 0.110101 \times 2^4$
- Pseudo-normalization IEEE 754 : <=> 1.10101×2^3 (in format of 1,xxxx where xxx = pseudo mantissa)

Decomposition of Number into its various elementss:

- Sign bit: 0 (Number positif)
- Exponent on 8 bits biased by $127 \Rightarrow 3+127 = 130 \Rightarrow 1000\;0010$
- Pseudo mantissa on 23 bits: 1010 1000 0000 0000 0000 0000

Sign	Biased exponent	Pseudo mantissa				
0	1000 0010	1010 1000 0000 0000 0000 000				

	Representation in IEEE 754-32 format						
Decimal	Sign	Exponent	Mantissa				
N1=(-6.53125) ₁₀	1	10000001	100010000000000000000000000000000000000				
$N2 = (-32.625)_{10}$	1	10000100	101000000000000000000000000000000000000				
$N3 = (-11.8561)_{10}$	1	10000011	11100011000001111101000				

Exercice 11:

	Sign	exponent	Mantissa
1	1	1000 0010	1010 1000 0000 0000 0000 000
1		$130 = 127 + 3 \Rightarrow puissance3$	10101
	ت.	2 ³	×1.10101

The result is $-1.10101 \times 2^3 = (-1101.01)_2 = (-13.25)_{10}$

	Sign	exponent	Mantissa
9	1	1000 0100	$1001 \ 0100 \ 0000 \ 0000 \ 0000 \ 000$
2	-	$132 = 127 + 5 \Rightarrow puissance 5$	1001 01
	-	2 ⁵	×1.1001 01

Result is $-1.1001 \ 01 \times 2^5 = (-110010.1)_2 = (-50.5)_{10}$

	Sign	exponent	Mantissa
3	0	10001010	111110000000000000000000000000000000000
	+	$138 = 127 + 11 \Rightarrow puissance 11$	1111 1
	+	2 ¹¹	×1.1111 1

The result is $+1.11111 \times 2^{11} = (+1111 \times 100 \times 1000)_2 = (+16128)_{10}$

Boolean Algebra

Exercise 1: Draw the truth table of the following expressions:

- $F_1(A,B) = A + \overline{AB}$
- $F_2(A,B) = \overline{AB} (A+B)$
- $F_3(A, B, C) = ABC + AB\overline{C} + A\overline{B}C + A\overline{B}\overline{C}$

Exercise 2: Prove the following theorems by the truth table

Idempotence : a + a + a + ... = aIdentity a + 0 = a a.1 = aAbsorption a.0 = 0 a + 1 = 1Complementary $a + \overline{a} = 1$ $a.\overline{a} = 0$ $\overline{a.b} = \overline{a} + \overline{b}$ $\overline{a + b} = \overline{a}.\overline{b}$

Exercise 3: Prove the following equations using the properties of Boolean algebra:

a + a.b = aa.(a + b) = a $a + \overline{a}.b = a + b$ $(a + b)(a + \overline{b}) = a$

Exercise 4: Simplify the following equations using the properties of Boolean algebra:

 $\begin{aligned} &(a+b)(a+c)\\ &(a+b)(\overline{a}+c)\\ &\overline{\overline{a}.b+\overline{\overline{a}+b}} \end{aligned}$

Exercise 5: Express the following functions in the first and second canonical form:

$$f1(x, y, z) = xy + x\overline{z} + \overline{y}z$$

f(a, b, c) = 1 if the count of variables at 1 is even

f(a, b, c, d) = 1 if at least two variables are equal to 1

Exercise 6: Simplify the functions of the previous exercice (exercice 5) using the Karnaugh map.

Exercise 7: Plot the logigrams of the functions of the previous exercice (exercice 5). **Exercise 8:** Study the function: $F(x, y, z) = x \oplus (y + z)$

By: Dr. A-NASRI

Boolean Algebra

Exercise	1:]	Draw	the	truth	table	of the	foll	owing	expressions:
								()	

А	В	AB	AB		F(A	.,B)=	=A+	AB				A	В	AB	ĀB	A+B	$F(A,B) = \overline{AB}(A+B)$
0	0	0	1		1							0	0	0	1	0	0
0	1	0	1		1							0	1	0	1	1	1
1	0	0	1		1							1	0	0	1	1	1
1	1	1	0		1							1	1	1	0	1	0
			[A	BC	B	Ē	ABC	ABC	ABC	ABC	F(A,B,C)	=ABC	+ABC+A	BC+ABC	ž	
			ſ	A	BC	B	\overline{c}	ABC	ABC	ABC	ABC	F(ABC)	=ABC	+ABC+A	BC+ABC	5	
				A 0	B C 0 0 0 1	B 1 1	C 1 0	ABC 0	ABC 0	ABC 0	ABC 0	F(A,B,C) 0 0	=ABC	+ABC+A	BC+ABC	2	
				A 0 0	B C 0 0 1 1 0	B 1 1 0	C 1 0 1	ABC 0 0 0	ABC 0 0 0 0	ABC 0 0 0	ABC 0 0 0 0	F(A,B,C) 0 0 0	=ABC	+ABC+A	BC+ABC		
			-	A 0 0 0	B C 0 0 1 1 1 0 1 1	B 1 1 0 0	C 1 0 1 0	ABC 0 0 0 0	ABC 0 0 0 0	ABC 0 0 0 0	ABC 0 0 0 0 0	F(A,B,C) 0 0 0 0	=ABC	+ABC+A	BC+ABC	Г. х.	
			-	A 0 0 0 0 1	B C 0 0 1 1 0 1 1 0 0	B 1 0 0 1	C 1 0 1 0 1 1	ABC 0 0 0 0 0	ABC 0 0 0 0 0	ABC 0 0 0 0 0	ABC 0 0 0 0 0 1 1	F(A,B,C) 0 0 0 0 1	=ABC	+ABC+A	BC+ABC		
			-	A 0 0 0 1 1	B C 0 0 1 1 0 1 1 0 0 0 1	B 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	<i>C</i> 1 0 1 0 1 0	ABC 0 0 0 0 0 0 0	ABC 0 0 0 0 0 0	ABC 0 0 0 0 0 1	ABC 0 0 0 1 0	F(A,B,C) 0 0 0 0 1 1	=ABC	+ABC+A	BC+ABC		
			-	A 0 0 1 1 1	B C 0 0 1 1 1 1 0 0 1 1 0 0 1 1	B 1 1 0 0 1 1 0 0 1 0 0 0 0	C 1 0 1 0 1 0 1 1 0 1	ABC 0 0 0 0 0 0 0 0 0	ABC 0 0 0 0 0 0 1	ABC 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ABC 0 0 0 1 0 0	F(A,B,C) ² 0 0 0 0 1 1 1 1	=ABC	+ABC+A	BC+ABC		

Exercise 2: Prove the following theorems by the truth table

1 Idempotence : $a + a + a + \dots = a$

a	a	a	a + a + a + a + a + a + a	a.a.a.a
0	0	0	0	0
1	1	1	1	1

2 Identity a + 0 = aa.1 = a

1	=	a	

a	0	1	a+0	a.1
0	0	1	0	0
1	0	1	1	1

3 Absorption a.0 = 0a+1=1

a	0	1	<i>a</i> .0	a+1
0	0	1	0	1
1	0	1	0	1

4 Complementary $a + \overline{a} = 1$ $a.\overline{a} = 0$

a	$a + \overline{a}$	$a.\overline{a}$
0	1	0
1	1	0

 $\overline{a.b} = \overline{a} + \overline{b}$

a	b	'a	b'	a.b	$\overline{a.b}$	$\overline{a} + \overline{b}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

 $\overline{a+b} = \overline{a}.\overline{b}$

a	b	'a	b'	a+b	$\overline{a+b}$	$\overline{a}.\overline{b}$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Exercise 3: Prove the following equations using the properties of Boolean algebra:

$$1^{\circ} a+a.b=a. (1+b)$$
 (common factors)
= a.1 (absorption)
= a (identity)

$$2^{\circ} a.(a+b)=a.a+a.b$$
 (distribution of . over +)
= a+a.b (idempotence)
= a.(1+b) (common factors)
= a.1 (absorption)
= a (identity)

3°

$$a+\overline{a}.b = (a+\overline{a}) . (a+b)$$
$$= 1. (a+b)$$
$$= (a+b)$$

(distribution of + over .)

4°

$$(a+b).(a+\overline{b}) = a+b\overline{b}$$

=a

Exercise 4:

 $1^{\circ} (a+b)(a+c) = a+(b.c)$ (distribution of + over .) 2°

$$(a+b).(\overline{a}+c) = a.\overline{a}+a.c+\overline{a}b+b.c$$
$$=0+ac+\overline{a}b+b.c (a+\overline{a})$$
$$=ac+\overline{a}b+abc+\overline{a}bc$$
$$=\overline{a}b(1+c)+ac(1+b)$$
$$=\overline{a}b+ac$$

3°

$$\overline{\overline{a}.b + \overline{\overline{a} + b}}$$

$$\overline{\overline{a}.b + \overline{\overline{a} + b}}$$

$$= (\overline{\overline{a}.b).(\overline{\overline{a} + b})$$

$$= (\overline{\overline{a} + \overline{b}).(\overline{\overline{a} + b)}$$

$$= (a + \overline{b})(\overline{\overline{a} + b)$$

$$= a.\overline{a} + a.b + \overline{a}.\overline{b} + b.\overline{b}$$

$$= a.b + \overline{a}.\overline{b}$$

Exercise 5:

$$1 f1(x, y, z) = xy + x\overline{z} + \overline{y}z$$

х	у	z	fl	Minterm	Maxterm
0	0	0	0		(x+y+z)
0	0	1	1	$\overline{x}.\overline{y}z$	
0	1	0	0		$(x + .\overline{y} + z)$
0	1	1	0		$(x + .\overline{y} + .\overline{z})$
1	0	0	1	$x.\overline{y}.\overline{z}$	
1	0	1	1	$x.\overline{y}z$	
1	1	0	1	$xy.\overline{z}$	
1	1	1	1	xyz	

1st canonical form: $F1 = \overline{x}.\overline{y}z + x.\overline{y}.\overline{z} + x.\overline{y}z + xy.\overline{z} + xyz$ 2nd canonical form $F1 = (x + y + z) (x + \overline{y} + z)(x + \overline{y} + \overline{z})$

2 F2(a, b, c) = 1 if the number of variables at 1 is even

a	b	с	f2	Minterm	Maxterm
0	0	0	1	$\overline{a}\overline{b}\overline{c}$	
0	0	1	0		$(a+b+\overline{c})$
0	1	0	0		$(a+\overline{b}+c)$
0	1	1	1	$\overline{a}bc$	
1	0	0	0		$(\overline{a} + b + c)$
1	0	1	1	$a\overline{b}c$	
1	1	0	1	$ab\overline{c}$	
1	1	1	0		$(\overline{a} + \overline{b} + \overline{c})$

1st canonical form $F2 = \overline{a}.\overline{b}.\overline{c} + \overline{a}bc + a.\overline{b}c + ab.\overline{c}$ 2nd canonical form $F2 = (a + b + \overline{c})(a + \overline{b} + c)(\overline{a} + b + c)(\overline{a} + \overline{b} + \overline{c})$

a	b	с	d	f3	Minterm	Maxterm
0	0	0	0	0		(a+b+c+d)
0	0	0	1	0		$(a+b+c+\overline{d})$
0	0	1	0	0		$(a+b+\overline{c}+d)$
0	0	1	1	1	$\overline{a}\overline{b}cd$	
0	1	0	0	0		$(a+\overline{b}+c+d)$
0	1	0	1	1	$\overline{a}b\overline{c}d$	
0	1	1	0	1	$\overline{a}bc\overline{d}$	
0	1	1	1	1	$\overline{a}bcd$	
1	0	0	0	0		$(\overline{a} + b + c + d)$
1	0	0	1	1	$a\overline{b}\overline{c}d$	
1	0	1	0	1	$a\overline{b}c\overline{d}$	
1	0	1	1	1	$a\overline{b}cd$	
1	1	0	0	1	$ab\overline{c}\overline{d}$	
1	1	0	1	1	$ab\overline{c}d$	
1	1	1	0	1	$abc\overline{d}$	
1	1	1	1	1	abcd	

1st canonical form

 $\mathrm{F3} = \overline{a}\overline{b}cd + \overline{a}\overline{b}\overline{c}d + \overline{a}\overline{b}c\overline{d} + \overline{a}\overline{b}cd + a\overline{b}\overline{c}d + a\overline{b}\overline{c}d + a\overline{b}\overline{c}d + a\overline{b}\overline{c}d + a\overline{b}\overline{c}d + ab\overline{c}d + abc\overline{d} + abcd$

2nd Canonical form

 $F3 = (a+b+c+d)(a+b+c+\overline{d})(a+b+\overline{c}+d)(a+\overline{b}+c+d)(\overline{a}+b+c+d)$

$$f_1 = x + yz$$

2 $f_2(a, b, c) = 1$ if the count of variables at 1 is even

3 f3(a, b, c, d) = 1 if at least two variables are equal to 1

Exercice 7:

Logigramme de la fonction $f1(x, y, z) = xy + x\overline{z} + \overline{y}z$.

Logigram of function $f_2(a, b, c) = 1$ if the count of variables at 1 is even.

Logigram of function f3(a, b, c, d) = 1 if at least two variables are equal to 1.

Exercice 8:

Truth table:

x	у	Z	f4
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Canonical forms:

1st canonical form:

х

1

 $F4(x, y, z) = \overline{x}.y.\overline{z} + \overline{x}.y.z + x.\overline{y}.\overline{z}$

2nd canonical form:

1

 $F4(x, y, z) = (x + y + z)(x + y + \overline{z})(x + \overline{y} + z)(\overline{x} + \overline{y} + z)(\overline{x} + \overline{y} + \overline{z})$ yz

0

0

0

Logigram of $F(x, y, z) = x \oplus (y + z)$.