Inverse Trigonometric Functions: $\arctan(x)$, $\arcsin(x)$, and $\arccos(x)$

1. Arctangent $(\arctan(x))$

Definition

The arctangent function is the inverse of the tangent function. It is defined as:

 $y = \arctan(x)$ if and only if $\tan(y) = x$ and $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Here, $y = \arctan(x)$ means that y is the angle whose tangent is x and y lies within the interval $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Properties

- **Domain**: \mathbb{R} (all real numbers).
- **Range**: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- Monotonicity: The arctangent function is strictly increasing.
- Asymptotes:

$$\lim_{x \to \infty} \arctan(x) = \frac{\pi}{2}, \quad \lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}.$$

Graph

The graph of $y = \arctan(x)$ has the following characteristics:

- It passes through the origin: $\arctan(0) = 0$.
- The graph approaches $\frac{\pi}{2}$ as $x \to \infty$ and $-\frac{\pi}{2}$ as $x \to -\infty$.

Derivative

The derivative of $\arctan(x)$ is given by:

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}.$$

2. Arcsine $(\arcsin(x))$

Definition

The arcsine function is the inverse of the sine function. It is defined as:

$$y = \arcsin(x)$$
 if and only if $\sin(y) = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Properties

- **Domain**: [-1, 1].
- Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- Monotonicity: The arcsine function is strictly increasing.
- Asymptotes:

$$\lim_{x \to 1} \arcsin(x) = \frac{\pi}{2}, \quad \lim_{x \to -1} \arcsin(x) = -\frac{\pi}{2}.$$

Graph

The graph of $y = \arcsin(x)$ has the following characteristics:

- It passes through the origin: $\arcsin(0) = 0$.
- The graph approaches $\frac{\pi}{2}$ as $x \to 1$ and $-\frac{\pi}{2}$ as $x \to -1$.

Derivative

The derivative of $\arcsin(x)$ is given by:

$$\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}.$$

3. Arccosine $(\arccos(x))$

Definition

The arccosine function is the inverse of the cosine function. It is defined as:

$$y = \arccos(x)$$
 if and only if $\cos(y) = x$ and $0 \le y \le \pi$.

Properties

- **Domain**: [-1,1].
- Range: $[0, \pi]$.
- Monotonicity: The accosine function is strictly decreasing.
- Asymptotes:

$$\lim_{x \to 1} \arccos(x) = 0, \quad \lim_{x \to -1} \arccos(x) = \pi.$$

Graph

The graph of $y = \arccos(x)$ has the following characteristics:

• It passes through (1,0) and $(-1,\pi)$.

Derivative

The derivative of $\arccos(x)$ is given by:

$$\frac{d}{dx}\arccos(x) = -\frac{1}{\sqrt{1-x^2}}.$$