## Lesson: Introduction to Functions

### Objective

By the end of this lesson, students will:

- Understand the basic definition of a function.
- Learn about different types of functions.
- Practice identifying domain and range.
- Understand how to evaluate functions for given inputs.

### 1 What is a Function?

A **function** is a relation between a set of inputs and a set of possible outputs where each input is related to exactly one output. In simpler terms, a function is a "rule" that assigns one output to each input.

#### Definition

A function f from a set A to a set B is a relation that assigns to each element x in A exactly one element y in B. We write this as:

$$f: A \to B$$

This means f maps each  $x \in A$  to exactly one  $y \in B$ , denoted as y = f(x).

#### Example

Let's say  $f(x) = x^2$ . For each input x, the function f gives back  $x \times x$  (i.e., the square of x).

$$f(2) = 2^2 = 4$$
  
 $f(3) = 3^2 = 9$ 

#### Key Terms

- **Domain:** The set of all possible input values (often represented by *x*).
- **Range:** The set of all possible output values (often represented by y).

For example, if  $f(x) = x^2$  and  $x \in [0, 5]$ , then the domain is [0, 5] and the range is [0, 25].

### 2 Types of Functions

#### 2.1 Linear Functions

A linear function has the form:

$$f(x) = mx + b$$

where:

- *m* is the slope of the line (how steep the line is).
- *b* is the y-intercept (where the line crosses the y-axis).

#### Example

If f(x) = 2x + 1, for each value of x, you can find f(x) by multiplying x by 2 and adding 1.

### 2.2 Quadratic Functions

A quadratic function is a function of the form:

$$f(x) = ax^2 + bx + c$$

The graph of a quadratic function is a **parabola**.

#### Example

For  $f(x) = x^2 + 3x + 2$ , you can calculate f(x) for different values of x to understand the shape of the curve.

### 2.3 Piecewise Functions

Piecewise functions are defined by different expressions depending on the value of x.

### Example

$$f(x) = \begin{cases} x+2 & \text{if } x < 0\\ x^2 & \text{if } x \ge 0 \end{cases}$$

### 2.4 Exponential Functions

An exponential function has the form:

$$f(x) = a \cdot b^x$$

where a is a constant and b is the base.

### Example

If  $f(x) = 2^x$ , this means the function grows exponentially as x increases.

### 3 Domain and Range

### 3.1 Domain

The domain of a function is the set of all possible input values that the function can accept.

#### Example

For the function  $f(x) = \frac{1}{x-1}$ , the domain excludes x = 1, because division by zero is undefined.

### 3.2 Range

The range of a function is the set of all possible output values.

### Example

For the function  $f(x) = x^2$ , the range is all non-negative numbers because squaring any real number results in a non-negative value.

## 4 Evaluating Functions

To evaluate a function means to find the output for a specific input.

### Example

If f(x) = 3x - 4, then:

$$f(2) = 3(2) - 4 = 6 - 4 = 2$$
  
$$f(0) = 3(0) - 4 = -4$$

# 5 Graphing Functions

Functions can be represented graphically, and the graph provides a visual understanding of how the function behaves.

### **Example: Linear Function**

For f(x) = 2x + 3, the graph will be a straight line with a slope of 2 and a y-intercept at 3.

### **Example: Quadratic Function**

For  $f(x) = x^2 - 2x + 1$ , the graph will be a parabola that opens upwards, with its vertex at the point (1, 0).



Linear function: y = 2x + 1



#### **Practice Problems** 6

- 1. Find the domain and range of the following functions:
  - f(x) = 2x + 3
    f(x) = <sup>1</sup>/<sub>x-5</sub>
    f(x) = √x

2. Evaluate the following functions for the given values of x:

- $f(x) = x^2 + 4x + 1$ , when x = 2 and x = -1.
- $f(x) = \frac{3}{x+1}$ , when x = 2.

3. Sketch the graph of the function  $f(x) = x^2 - 4x + 3$  and determine its vertex and axis of symmetry.

### 4. Monotonicity

A function f(x) is called:

- \*\*Increasing\*\* if for all  $x_1, x_2$  such that  $x_1 < x_2$ , we have  $f(x_1) \le f(x_2)$ .
- \*\*Decreasing\*\* if for all  $x_1, x_2$  such that  $x_1 < x_2$ , we have  $f(x_1) \ge f(x_2)$ .

A function is \*\*strictly increasing\*\* if  $f(x_1) < f(x_2)$  for  $x_1 < x_2$ , and \*\*strictly decreasing\*\* if  $f(x_1) > f(x_2)$  $f(x_2)$  for  $x_1 < x_2$ .

### 5. Symmetry

A function f(x) is called:

- \*\*Even\*\* if f(-x) = f(x) for all x in the domain. This implies symmetry about the y-axis.
- \*\*Odd\*\* if f(-x) = -f(x) for all x in the domain. This implies symmetry about the origin.

### 6. Boundedness

A function f(x) is:

- \*\*Bounded above\*\* if there exists a constant M such that  $f(x) \leq M$  for all x in the domain.
- \*\*Bounded below\*\* if there exists a constant m such that  $f(x) \ge m$  for all x in the domain.
- \*\*Bounded\*\* if it is both bounded above and bounded below, i.e., there exist constants M and m such that  $m \leq f(x) \leq M$  for all x in the domain.