Chap 3 : Sinusoidal power grids

If a sinusoidal voltage (or current) is imposed on a network, a sinusoidal response of the
same frequency as the applied voltage (or current) appears, in addition to the transient
regime. When the transient regime has disappeared, this sinusoidal response remains: it is the
permanent sinusoidal regime. In this part, we study linear circuits in which the signals
Imposed by the generators are sinusoidal.

1. Sinusoidal quantities

A signal is said to be sinusoidal if it is of the form : X(t) = X,,, cos(wt + ¢) =

X\2cos(wt + @)
X Amplitude of the signal.

o : pulsation of the periodic signal and is expressed in (rad/s).

T = Zf: Signal period, f = % = % : Signal frequency.
wt + ¢ : is the phase of the signal and is expressed in radians (rad).

@ : Initial phase of the signal (att = 0).

2 1,7 5 — *m
X2 =], x*(t)dt X=23

X : Effective value defined by : " we obtain

3 (t) ‘ . ‘

2. Representations of sinusoidal quantities
2.1. Vector representation (Fresnel method)
This method allows the addition of instantaneous sinusoidal quantities of the same
frequency, but of different amplitudes and phases.
- Consider two sinusoidal currents :

Y

i,(t) =I,,cos(wt + @,) i,(t) =1, cos(wt + ¢@,)

and
The sum of the two currents is : i (t) = i1(t) + iz ().
- To find i (t), we can proceed graphically :
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o X

- Consider a vector denoted I, of Iy standard, rotating in the plane xOy at an angular
velocity o, and whose angle with the Ox axis at a time t is equal to wt + ¢ . We define a
vector in the same way I,

- The projections on Ox of the vectors I, and I, are equal to the currents i and i
respectively.

The sum of the two currents i (t) is the projection of the sum vector :
i(t)=Imcos(wt+) et] = 1_1) + I?, such as ||f|| = Iy

2.2. Complex representation

2.2.1. Mathematical reminders

- A complex number can be put in the form: Z=a + jb

We call: a = R(Z) the real part.

and b = Im(Z) the imaginary part.

- We can associate a vector OM in the complex plane: Z =r cos6 + j r sin

A Axe des imaginaires

b = Z sin0® Z
3]
0 -

a=Z cost

Axe des réels

>

s e

r =|Z| = va? + b? : modulus of the complex number
0 = arg(Z) = arctan Z . argument (angle) of the complex number

2
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- It can also be written in the exponential form: Z = re/?
- orin polar form: Z=1r, 6] =r 46

.TT
- special case: J = e’z

2.2.2. Application to sinusoidal signals
A sinusoidal signal x (t) is associated with a complex time quantity X :

x(t) = x,, cos(wt + @) = R(Xe/®t), X =x,e/® =X \2.e/?

x(t) = X
Xm : modulus of the complex quantity (|X|),
¢ : argument of the complex quantity (argX),
X = Xm/N2 : effective value.
Note : We will note x(t) as the instantaneous value, X as the RMS value, and X as the
complex value.

2.2.3. Derivative and integration
Let the function x (t ) = xm cos(® t +¢ ), the derivative is written :

dx . _ 1
- —xpwsin(wt + @) = x,cos (m t +@ +§)
It is associated with the complex amplitude :
{uxmej(mrw%) = jwx el @) — i xelWt

Therefore :% = jwX

In the same way, it is shown that the integral is equivalent to dividing by jo: [ xdx = jiwg

3. Complex model of a circuit in the sinusoidal regime
In a sinusoidal circuit, we can write : _
e(t) = Eocosot = R(E&™), E = E,
The voltage source e(t) is replaced by its complex form denoted E :
e(t) = E =E,
In the complex model, any linear dipole has a complex impedance : Z=R + jX

where R: represents the resistance of the dipole.
X: reactance.

3.1. Complex impedances of elementary dipoles
The complex impedance Z is defined for a linear dipole as being equal to the ratio of the
value complex of the voltage U on the complex value of the current [ : Z =

~ <=
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A

3.1.1. Impedance of a resistor
we have: u(t) =R i (1)
Moving on to the complex amplitudes, we then obtain: U = Z.1
In the case of a resistor, the complex impedance is equal to R : Zgr = R,
3.1.2. Impedance of an ideal coil
di(t)
dt
This temporal relationship is expressed in terms of complex amplitudes by : U = jLwl
The definition of the complex impedance of a linear dipole then allows us to set Z, = jLo

The relationship between current and voltage across an inductor coil L is: u(t) = L

3.1.3. Impedance of a capacitor
The relationship between current and voltage across an ideal capacitor of capacitance C is

1., _ 1
U(t) = Ef i(t)dt. We deduct U = ijg

The expression of the capacitor impedance is written: Z¢ = ]Ciw

3.2. Sinusoidal Laws
All laws seen in a continuous regime are applicable to sinusoidal regimes provided that
they are Apply to snapshot values or complex values.
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3.3. Passive Dipole Grouping
Let be a grouping of passive dipoles, with complex impedance Zi and complex admittance

Yi=1/Zi.
The equivalent impedance is :

Series association

4 Z Zn z
g I o o R B =) %




Chap 3 : Sinusoidal power grids

=

Parallel association

N

i

I-a:
uv'
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-
|54

What was true for the association of resistors remains applicable to the association of

Impedances.
3.3. Study of a serial RLC circuit
A sinusoidal generator delivering a voltage e(t), an ohmic conductor of resistor R, a

perfect coil of inductance L and a capacitor of capacitance C
L C

1(t)

Ur= Rl(t) U=Ldi/dtii5etiiUc=(1/C).[idt
Loi des mailles : U(t) = Ur+U+Uc=Ri(t)+Ldi/dt+(1/C) [idt = e

e =Ri(t) + Ldi/dt + (1/C)[idt
We replace i(t) and e(t) with their complex notation :
. 1
E=RI+jlLwl+—I=(R+ -
- LTJROLT et ( j( @ )j‘ So,we have: U = Z1
We find the impedance: Z = R + j(Lw—1/Cw), and its modulus : |Z| = {/R? + (Lo — 1/cw)?

(Lw_]C_a))
o (the proper

And the argument: ¢ = arctan

Resonance in intensity
In a series RLC circuit, when the generator imposes a pulsation ®
pulsation), the circuit enters into intensity resonance, the intensity of the current is then

maximum :
+ j(lw — m)

|t ||ty

[ P
Il
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I is maximum, when the denominator is minimal : Lo — (1/Cw) = 0. So we will have :

=

LCw; =1, wy =

- Proper pulse oy : N
fo=2_-_1
- Natural frequency fo: "% 2n  2mvic

- The impedance of the circuit is minimal and real: Z =R

- The phase shift is zero: ¢ =0

Vin/2R |

<

L f
- Bandwidth: A® = 02- 1, ©1 and o are values of ® for which I = I/A2
The width of this bandwidth is: A®w = m2- ®1 = 0/Q

- The resonance acuity is expressed using the quality factor of the circuit Q :

The greater the quality factor, the higher the resonance.

3.5. Puissance
3.5.1. Puissance instantanée

Let us say: u(t) =U V2cos(ot + @) the voltage across a dipole,
i(t) = I \2cosot the intensity of the current that passes through it.
The power received by this dipole is defined by: p(t) = u(t).i(t).
p(t) = 2U.1 cos (o t)cos (o t +¢ ) = Ul cose +Ul cos (2w t +¢)
It is noted that power is a periodic function of period T/2 with respect to u(t) and i(t).
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3.5.2. Average power
The average power P is defined by : p(t) = (1/T).Jp(t)dt = Ulcose

Power is also called active power in sinusoidal regime.
The perfect coil (¢ = 1/2) and the capacitor (¢ = 1/2) do not consume active power
and therefore no energy.



