1 Algebraic structures

2 Law of internal composition

Definition
Any application * : F X F — E. on a set FE is called a law of internal
composition. A subset F' of F is said to be stable with respect to the law * if :

Va,be F,axbe F.

Example
Let A be a set and E = P(A), then intersection and reunion of sets are two
laws of internal compositions in E because : VX, Y € P(A),

XNYCXCA,
and we have

Ve, z€eXUY=>(xeX)VzeY)=>(xzcA) Vel = (zxel,

So
XUY CA,
Example
which shows that N and U are laws of internal compositions in P(A).
Example

Let F = {{a,b},{a,c},{b,c}} € P({a,b,c}), then F is not stable with
respect to intersection and reunion, because :

X ={a,b},Y ={a,c} € F; XNY ={a} ¢ F.

X ={a,b}, Y ={a,c} € F; XUY ={a,b,c} ¢ F.

Definition
If * and . are two internal composition laws on E, we say that :
1. * is commutative if :

Va,b€ E, axb=>bx*a.
2. * is associative if :
Va,b,c € E, (axb)xc=ax(bxc).
3. xis distributive with respect to . if :
Va,b,c € E, a* (b.c) = (axb).(a*c) et (b.c) xa= (bxa).(cxa).
4. e € F is a left (respectively right) neutral element of the * law if

Va € E, e x a = a (respectivelya x e = a).



If e is a neutral element to the right and left of * we say that e is a neutral
element of .

Example

Let F be a set and E = P(F'). Consider on E the internal composition laws
"N" and "U", then it’s very easy to show that:

—"N" and "U" are associative.

—"N" and "U" are commutative.

— @ is the neutral element of U.

— F' is the neutral element of N.

— N is distributive with respect to U and U is distributive with respect to N.

Proposition

If an internal composition law * has a right-neutral element ¢’ and an e”
left-neutral element, then ¢/ = e¢”and it is a neutral element of x.

Proof

Let €’( respectively e¢’) be a right-neutral (respectively left-neutral) element
of *, then

¢ =¢” x e car ¢’élément neutre & gauche de *

" " / /272 N .
e’ =e¢e' xe car e élément neutre & droite de x ,

which shows that

e =e

Remark:

According to the latter property, if * has a neutral element, then it is unique.
Definition:

Let % be an internal composition law on a set E admitting a neutral element
e. An element a € F is said to be invertible, or symmetrizable, to the right
(respectively left) of * if

Jda' € F, a*a' = e (respectively a’ x a = e),

and a’ is said to be a right-hand (respectively left-hand) inverse (or symmet-
rical) of a.
If there exists o’ € E such that

' xa=axa =e

a is said to be invertible (or symetrisable) and a’ is said to be an inverse (or
symmetric) of a with respect to *.

Remark:

The symmetric of an element is not always unique.

Example

Let E = {a,b, c}, we define an internal composition law in E by :

QIO

o|Se|e

Q|| *
QIR[O|O




Note that :

- a is the neutral element of x.

—All elements of E are invertible with :

i) a is the inverse of a,

ii) ¢ is the inverse of b,

iii) b and c are inverses of c.

Proposition

Let * be a law of internal composition in E, associative and admitting a
neutral element e. If an element z € E is symmetrizable, then its symmetric is
unique.

Proof

Say x1 is a right-hand inverse of x and x5 is a left-hand inverse of x, then

T*xT) =eet ToxxTr =€

So,
1 = exx; = (T2%x)*17
= 9% (z xx1) because x is associative
= X *x€ = XT3.
Proposition

Let * be a law of internal composition in a set F, associative and admitting
a neutral element e, then if a and b are two invertible (symmetrizable) elements
so will be (a * b) and we have :

(axb)™' =b"txa"! where a™! is the inverse element of a

Proof
Let a,b € FE be two invertible elements, then
(axb)xb'xa™' = ax(bxb"')xa’
= (axe)xal=axa ' =c

In the same way, we show that
(b xa ) (axb) =e,
we deduce that (a * b) is invertible and that

(axb) ™' =b"txat.

3 Group structure

Definition
We call a group, any non-empty set G provided with an internal composition
law * such that :



1. x is associative ,

2. x has a neutral element e ,

3. Every element of G is symmetrizable.

If moreover * is commutative, we say that (G, *) is a commutative group, or
Abelian group.

Example

(R*, x) is a commutative group, x is the usual multiplication. Let’s check
each of the properties:

1. If x,y € R* then

x Xy € R

2. For all z,y,z € R*, then
rx (yxz)=(xxy) Xz

is the associativity of multiplication of real numbers.
3. 1 is the neutral element for multiplication because

Ixzx=zand x x1=ux,

whatever z € R*.
4. The inverse of an element © € R*} is

z =2
T

1
(because z x — =1).

Note in passing that we had excluded 0 from our group, as it has no inverse.
These properties make (R*, x) a group.

TXY=yYXuz,

- (Q*, x), (C*, x) are commutative groups.
- (Z,+) is a commutative group. Here + is the usual addition.
1. If x, y € Z then

T+ycEZ.

2. For all z,y, 2z € Z then
(z+y)+z=z+(y+2).

3. 0 is the neutral element for addition.
O+z=zand z+0=uz,

whatever x € Z..
4. The inverse of an element x € Z is

r = —X



because
x+(—z)=0

5. Finally
THYy=y+w,

and therefore (Z, +) is a commutative group.
- (Q,4), (R,4), (C,+) are abelian groups.

3.1 Subgroups

Definition
Let (G, x) be a group, and let G’ be a non-empty subset of G, we say that
G” is a subgroup of (G, ) if :

(i) Va,be G', axbe G’
(ii) Yae G, a e

Example
Let n € N, then
nZ ={n.p; p € Z}

is a subgroup of Z.
Indeed:
i) Let =, y € nZ then there exist p1, po € Z such that

T = n.p1ety = n.ps,

50,
T+ y=mn.p; +n.ps=n.(p; +p2) € nZ.

ii) Let « € nZ then 3 p € Z such that
T = n.p.
Let 2’ be the symmetric of z, so,z + 2’ =e =0
(0 is the neutral elementof (Z,+)),

=1 =—z=-np=n.(—p) € nZ.

From i) and ii) we deduce that nZ is a subgroup of Z.
Proposition:
Let (G, %) be a group and G’ C G, then

(1) G4 o

.
G'is a subgroup of G < { (2) Ya,be G, axbte @

Proof
I. Let G’ be a subgroup of (G, %)), then:



1) * has a neutral element in G’ because

Ya € G',a™! € G'(according to (ii) of the definition).

according to (i), we have

axa l=ec @,

So
G +0o.
2) Let a,b € G', from (ii) we have b= € G/, so

a*b~' € G'(according to (i) ).

I1. Conversely, let G’ be a subset of G such that

(1) G #2
(2) Va, be G',axb"t € G

1) Since G' # @, then there exists a € G’ and according to the second
hypothesis we have
e=axa'ecd.
2) Let z € G', as e € G',, then according to the second hypothesis we will
have
rl=ex2zled.

3) Vz, y € G, from ii) we have

TRY =T * (yfl)_l ed,
therefore, G'is a subgroup of G.
Remark

From I) of the proof of the previous proposition, we see that: If e is the

neutral element of a group ((G, ), then every subgroup of G contains e and we
deduce the following corollary.

Corollary

Let (G, %) be a group, e the neutral element of x and G’ a subset of G,then
G’ is a subgroup of G if and only if:

(1) ee G’
(2) Va,be G axb e &
Example
Let the group (RQ, —i—) with the operation 4+ be defined by :
(a,b) + (¢,d) = (a+¢,b+d)
So,
H = {(a,b) e R?/a+2b=0}



is a subgroup of R2.

Indeed:

i) H # @ because (0,0) € H.
i7) Let (a,b), (c,d) € H, then

a+20=0
c+2d=0"

Example 1 so,

(a—c)+2(b—-d)=0,

as a result,
(a—c,b—d) = (a,b)+ (—c,—d) € H.

From i) and ii) we deduce that H is a subgroup of R2.

3.2 Homomorphisms of groups

Definition
An application f : (G,.) — (H,x) is called a group homomorphism of G in
H if .
Va,b € G, f(a.b) = f(a)* f(b).

- If f is bijective, we say that f is an isomorphism (of groups) of G onto H.
We then say that G is isomorphic to H, or that G and H are isomorphic.

-If G = H , we say that f is an endomorphism of G, and if moreover f is
bijective, we say that f is an automorphism (of group) of G.

Example

Given the groups (R, +) and (R*,.), then the applications

o R+)—=(R*.) et g:(R+)— (R,

T —— expz x +— In|z|
are homomorphisms of groups
Definition

Let f : G — H be a group homomorphism with e and e’ the neutral elements
of G and H respectively. We call the kernel of f the set

Kerf=f1()={recG; f(z)=¢},
and the image of f the set
Im f = f(G)={f(2); z€G}.

Properties:

Let f: G — H be a homomorphism of groups, then
1. fle)=¢.

2.Va€G, (f(a) ' =f(a").



3. The image of a subgroup of G is a subgroup of H .

4. The reciprocal image of a subgroup of H is a subgroup of G.

Remark:

As special cases of the properties, Imf is a subgroup of (H, ) and Kerf is a
subgroup of (G, .).

Proposition:

Let : G — H be a group homomorphism, then.

1.f is injective if and only if

Kerf = {e}.
2. f is surjective if and only if
Imf=H.
3. fis an isomorphism if and only if f~! exists and is a group homomorphism
from H into G.
Proof

Let f : G — H be a group homomorphism, then
la. If f is injective, knowing that e € ker f we’ll show that

kerf C {e}.
Let x € kerf , then
flz)=¢
and as
fle)=¢
we deduce that
flz) = f(e)

and since f is injective we deduce that
T=e

So
x € {e}
which shows that
kerf = {e}.
1b. Conversely, suppose kerf = {e} and show that f is injective.
Let z,y € G, then

f(z)

|
~

N
8
@I
m}—‘
g
Y



which shows that f is injective.
2. The proof of this property is immediate, given that

Im f = f(G).

3. We will restrict ourselves to showing that if f is an isomorphism, then
f~!': H — G is a homomorphism.
Let x,y € H, then there exist a,b € G such that

2= Ja) et y = f(b)
’ o= ) etb=f"1(y)

as a result

fhaxy) = [ (f(a) = f(b)

= a.b
= i) )

which shows that f~! is a group homomorphism from H into G.

4 Rings structure

Definition 2 We call a ring any set A equipped with two internal composition
laws + and . such that:
1. (A, +) is an abelian group (we will denote 04 the neutral element of +),
2. . is associative and distributive with respect to +.

Remark 3 If in addition, . is commutative, we say that (A, +,.) is a commu-
tative ring.

Remark 4 - If. accepts a neutral element, we say that (A,+,.) is a unitary or
uniferous ring.

Example 5 (Z,+, x), (Q,4+, x),(R,+, x) are unitary commutative rings.

Calculation rules in a Ring

Let (A, +,.) be a ring, then we have the following calculation rules:
Properties :

For all z,y and z € A, we have

1. OA X =XT. OA ZOA.

2. z.(-y) = (-2)y = —(z.y)
3. 2.(y — 2) = (z.y) — (z.2).
4. (y — 2).x = (y.x) — (z.x).



Definition 6 If there exist in a ring (A, +,.) two elements a # 04, b# 04:

a.b= OA

we say that a and b are divisors of 04.
- We say that (A, +,.) is a complete ring if there exists no divisor of 04, i.e.

ab=04<a=04Vb=0y4.

Example 7 (Z,+, x) is a complete ring.

4.1 Subrings

Definition 8 : A subset A'of (A,+,.) is a subring if and only if:
1. A £ 2.
2. Vx,ye A,z —ye A
3. Vr,yec A, z.ye A'.

Example 9 (nZ,+, x) is a subring of (Z,4+, x).

4.2 Homomorphismes of rings
Let (A,+,.) and (B, ®,®) be two rings and f: A — B.
Definition 10 We say that fis a ring homomorphism if:

Vr,y € A, f(x+y) = f(x) D fy) et f(zy) = f(z) @ f(y).

—- If A = B we say that [ is an endomorphism of rings .
— If f is bijective, we say that f is an isomorphism of rings.
— If f is bijective and A = B, we say that f is an automorphism of rings.

Definition 11 Let A and B be two unitary rings, we say that an homomor-
phism of rings f from A to B is unitary if f (14) = 1p.

Proposition 12 Let f: A — B a ring homomorphism, so

— f is injective if and only if kerf = {04}

—If A and B are two unitary rings and f is a surjective ring homomorphism,
then f is unitary.

— The image (respectively the reciprocal image) of a subring of A (respectively
of B) by f is a subring of B (respectively of A).

5 Fields

Definition 13 A wnitary ring (K,+,.) is said to be a field if every non-zero
element of K is invertible.
If moreover, . is commutative, we say that K is a commutative field.

Example 14 (R, +, X), (Q,+, x), (C,+, X) are commutative fields.
(Z,+, x) is not a field.

10



5.1 Subfields

Definition 15 A subset L’ of (K,+,.) is a subbody if and only if:
1. L # 2.
2. Ve,ye L,z —ye L.
3. Va,y € L*, z.y~t € L* (whereL* = L — {0k }).

Example 16 (Q,+, x) is a subfield of (R, 4+, x).
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