1 Algebraic structures

2 Law of internal composition

Definition

Any application $* : E \times E \to E$. on a set E is called a law of internal composition. A subset F of E is said to be stable with respect to the law $*$ if :

$$
\forall a, b \in F, \, a \ast b \in F.
$$

Example

Let A be a set and $E = P(A)$, then intersection and reunion of sets are two laws of internal compositions in E because : $\forall X, Y \in P(A)$,

$$
X\cap Y\subset X\subset A,
$$

and we have

$$
\forall x, \quad x \in X \cup Y \Rightarrow (x \in X) \vee (x \in Y) \Rightarrow (x \in A) \vee (x \in A) \Rightarrow (x \in A),
$$

So

$$
X \cup Y \subset A,
$$

Example

which shows that \cap and \cup are laws of internal compositions in $P(A)$. Example

Let $F = \{\{a, b\}, \{a, c\}, \{b, c\}\} \subset P(\{a, b, c\})$, then F is not stable with respect to intersection and reunion, because :

$$
\exists X = \{a, b\}, Y = \{a, c\} \in F; \ X \cap Y = \{a\} \notin F.
$$

$$
\exists X = \{a, b\}, Y = \{a, c\} \in F; \ X \cup Y = \{a, b, c\} \notin F.
$$

Definition

If $*$ and . are two internal composition laws on E , we say that : 1. $*$ is commutative if :

$$
\forall a, b \in E, \, a \ast b = b \ast a.
$$

2. $*$ is associative if :

$$
\forall a, b, c \in E, (a * b) * c = a * (b * c).
$$

 $3. \,$ \ast is distributive with respect to . if :

$$
\forall a, b, c \in E, a * (b.c) = (a * b). (a * c) \text{ et } (b.c) * a = (b * a). (c * a).
$$

4. $e \in E$ is a left (respectively right) neutral element of the $*$ law if

$$
\forall a \in E, e * a = a \text{ (respectively } a * e = a).
$$

If e is a neutral element to the right and left of $*$ we say that e is a neutral element of $*$.

Example

Let F be a set and $E = P(F)$. Consider on E the internal composition laws " \cap " and " \cup ", then it's very easy to show that:

 $\overline{}$ = " \cap " and " \cup " are associative.

 $\mathbf{u} = \mathbf{v} \cap \mathbf{v}$ and $\mathbf{v} \cup \mathbf{v}$ are commutative.

– \varnothing is the neutral element of \cup .

 F is the neutral element of \cap .

 \Box is distributive with respect to \Box and \Box is distributive with respect to \cap . Proposition

If an internal composition law $*$ has a right-neutral element e' and an e'' left-neutral element, then $e' = e''$ and it is a neutral element of $*$.

Proof

Let e' respectively e'') be a right-neutral (respectively left-neutral) element of $*$, then

 $e' = e'' * e'$ car e'' élément neutre à gauche de $*$,

 $e'' = e'' * e'$ car e'élément neutre à droite de $*,$

which shows that

 $e'=e''$.

Remark:

According to the latter property, if $*$ has a neutral element, then it is unique. Definition:

Let $*$ be an internal composition law on a set E admitting a neutral element e. An element $a \in E$ is said to be invertible, or symmetrizable, to the right (respectively left) of $*$ if

$$
\exists a' \in E, \, a * a' = e \, \text{(respectively } a' * a = e),
$$

and a' is said to be a right-hand (respectively left-hand) inverse (or symmetrical) of a.

If there exists $a' \in E$ such that

$$
a' * a = a * a' = e
$$

 a is said to be invertible (or symetrisable) and a' is said to be an inverse (or symmetric) of a with respect to $*$.

Remark:

The symmetric of an element is not always unique. Example

Let $E = \{a, b, c\}$, we define an internal composition law in E by :

Note that :

- a is the neutral element of $\ast.$ –All elements of ${\cal E}$ are invertible with : i) a is the inverse of a , ii) c is the inverse of b , iii) b and c are inverses of c . Proposition

Let $*$ be a law of internal composition in E , associative and admitting a neutral element e . If an element $x \in E$ is symmetrizable, then its symmetric is unique.

Proof

Say x_1 is a right-hand inverse of x and x_2 is a left-hand inverse of x, then

$$
x * x_1 = e \text{ et } x_2 * x = e
$$

So,

$$
x_1 = e * x_1 = (x_2 * x) * x_1
$$

= $x_2 * (x * x_1)$ because * is associative
= $x_2 * e = x_2$.

Proposition

Let $*$ be a law of internal composition in a set E , associative and admitting a neutral element e, then if a and b are two invertible (symmetrizable) elements so will be $(a * b)$ and we have :

$$
(a * b)^{-1} = b^{-1} * a^{-1}
$$
 where a^{-1} is the inverse element of a

Proof

Let $a, b \in E$ be two invertible elements, then

$$
(a * b) * b^{-1} * a^{-1} = a * (b * b^{-1}) * a^{-1}
$$

=
$$
(a * e) * a^{-1} = a * a^{-1} = e.
$$

In the same way, we show that

$$
(b^{-1} * a^{-1}) * (a * b) = e,
$$

we deduce that $(a * b)$ is invertible and that

$$
(a \star b)^{-1} = b^{-1} \ast a^{-1}.
$$

3 Group structure

Definition

We call a group, any non-empty set G provided with an internal composition law \ast such that :

1. $*$ is associative,

2. \ast has a neutral element e ,

3. Every element of G is symmetrizable.

If moreover $*$ is commutative, we say that $(G, *)$ is a commutative group, or Abelian group.

Example

 (\mathbb{R}^*, \times) is a commutative group, \times is the usual multiplication. Let's check each of the properties:

1. If $x, y \in \mathbb{R}^*$ then

$$
x \times y \in \mathbb{R}^*.
$$

2. For all $x, y, z \in \mathbb{R}^*$, then

$$
x \times (y \times z) = (x \times y) \times z,
$$

is the associativity of multiplication of real numbers. 3. 1 is the neutral element for multiplication because

$$
1 \times x = x
$$
 and
$$
x \times 1 = x
$$
,

whatever $x \in \mathbb{R}^*$.

4. The inverse of an element $x \in \mathbb{R}^*$ is

$$
x^{-1} = \frac{1}{x}
$$

(because $x \times \frac{1}{x}$ $\frac{1}{x}$ =1).

Note in passing that we had excluded 0 from our group, as it has no inverse. These properties make (\mathbb{R}^*, \times) a group.

$$
x\times y=y\times x,
$$

 $\left(\mathbb{Q}^*, \times\right)$, $\left(\mathbb{C}^*, \times\right)$ are commutative groups. $- (Z, +)$ is a commutative group. Here $+$ is the usual addition. 1. If $x, y \in \mathbb{Z}$ then

$$
x+y\in\mathbb{Z}.
$$

2. For all $x, y, z \in \mathbb{Z}$ then

$$
(x + y) + z = x + (y + z).
$$

3. 0 is the neutral element for addition.

$$
0 + x = x
$$
 and
$$
x + 0 = x
$$
,

whatever $x \in \mathbb{Z}$..

4. The inverse of an element $x \in \mathbb{Z}$ is

 $x' = -x$

because

$$
x + (-x) = 0
$$

5. Finally

 $x + y = y + x$;

and therefore $(\mathbb{Z}, +)$ is a commutative group. $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$ are abelian groups.

3.1 Subgroups

Definition

Let $(G, *)$ be a group, and let G' be a non-empty subset of G, we say that G' is a subgroup of $(G, *)$ if :

$$
\begin{cases} (i) \ \forall a, b \in G', a * b \in G' \\ (ii) \ \forall a \in G', a^{-1} \in G' \end{cases}
$$

.

Example

Let $n \in \mathbb{N}$, then

$$
n\mathbb{Z} = \{n.p; \ p \in \mathbb{Z}\}
$$

is a subgroup of Z. Indeed: i) Let $x, y \in n\mathbb{Z}$ then there exist $p_1, p_2 \in \mathbb{Z}$ such that

$$
x=n.p_1ety=n.p_2,\\
$$

so,

$$
x + y = n.p_1 + n.p_2 = n.\ (p_1 + p_2) \in n\mathbb{Z}.
$$

ii) Let $x \in n\mathbb{Z}$ then $\exists p \in \mathbb{Z}$ such that

$$
x=n.p.
$$

Let x' be the symmetric of x, so, $x + x' = e = 0$

(*o* is the neutral element of $(\mathbb{Z}, +)$),

$$
\Rightarrow x' = -x = -n.p = n. (-p) \in n\mathbb{Z}.
$$

From i) and ii) we deduce that $n\mathbb{Z}$ is a subgroup of \mathbb{Z} . Proposition:

Let $(G,*)$ be a group and $G' \subset G$, then

$$
G
$$
'is a subgroup of $G \Leftrightarrow \begin{cases} (1) \ G' \neq \emptyset \\ (2) \ \forall a, b \in G', \ a * b^{-1} \in G' \end{cases}$.

Proof

I. Let G' be a subgroup of $(G, *)$, then:

1) $*$ has a neutral element in G' because

 $\forall a \in G', a^{-1} \in G'$ (according to (ii) of the definition).

according to (i), we have

$$
a * a^{-1} = e \in G',
$$

So

$$
G'\neq\varnothing.
$$

2) Let $a, b \in G'$, from (ii) we have $b^{-1} \in G'$, so

$$
a * b^{-1} \in G'(\text{according to }(i)).
$$

II. Conversely, let G' be a subset of G such that

$$
\begin{cases} (1) \tG' \neq \varnothing \\ (2) \t\forall a, b \in G', a * b^{-1} \in G' \end{cases}.
$$

1) Since $G' \neq \emptyset$, then there exists $a \in G'$ and according to the second hypothesis we have

$$
e = a * a^{-1} \in G'.
$$

2) Let $x \in G'$, as $e \in G'$, then according to the second hypothesis we will have

$$
x^{-1} = e * x^{-1} \in G'.
$$

3) $\forall x, y \in G'$, from ii) we have

$$
x * y = x * (y^{-1})^{-1} \in G',
$$

therefore, G' is a subgroup of G .

Remark

From I) of the proof of the previous proposition, we see that: If e is the neutral element of a group $((G, *),$ then every subgroup of G contains e and we deduce the following corollary.

Corollary

Let $(G, *)$ be a group, e the neutral element of $*$ and G' a subset of G , then G' is a subgroup of G if and only if:

$$
\begin{cases}\n(1) e \in G' \\
(2) \ \forall a, b \in G', a * b^{-1} \in G'\n\end{cases}
$$

Example

Let the group $(\mathbb{R}^2, +)$ with the operation + be defined by :

$$
(a, b) + (c, d) = (a + c, b + d)
$$

So,

$$
H = \{(a, b) \in \mathbb{R}^2 / a + 2b = 0\}
$$

is a subgroup of \mathbb{R}^2 . Indeed: i) $H \neq \emptyset$ because $(0, 0) \in H$. ii) Let (a, b) , $(c, d) \in H$, then

$$
\begin{cases}\n a+2b=0 \\
 c+2d=0\n\end{cases}
$$

Example 1 so,

$$
(a-c) + 2(b-d) = 0,
$$

as a result,

$$
(a-c, b-d) = (a, b) + (-c, -d) \in H.
$$

From i) and ii) we deduce that H is a subgroup of \mathbb{R}^2 .

3.2 Homomorphisms of groups

Definition

An application $f : (G,.) \to (H, *)$ is called a group homomorphism of G in H if :

$$
\forall a, b \in G, f(a.b) = f(a) * f(b).
$$

- If f is bijective, we say that f is an isomorphism (of groups) of G onto H . We then say that G is isomorphic to H , or that G and H are isomorphic.

- If $G = H$, we say that f is an endomorphism of G, and if moreover f is bijective, we say that f is an automorphism (of group) of G .

Example

Given the groups $(\mathbb{R}, +)$ and (\mathbb{R}^*, \cdot) , then the applications

$$
f : (\mathbb{R}, +) \to (\mathbb{R}^*,.) \text{ et } g: (\mathbb{R}, +) \to (\mathbb{R}^*,.)
$$

$$
x \mapsto \exp x \qquad x \mapsto \ln|x|
$$

are homomorphisms of groups Definition

Let $f: G \to H$ be a group homomorphism with e and e' the neutral elements of G and H respectively. We call the kernel of f the set

$$
Ker f = f^{-1}(e') = \{x \in G; f(x) = e'\},\
$$

and the image of f the set

Im
$$
f = f(G) = \{f(x); x \in G\}.
$$

Properties:

Let $f: G \to H$ be a homomorphism of groups, then 1. $f(e) = e'$. 2. $\forall a \in G, (f(a))^{-1} = f(a^{-1}).$

3. The image of a subgroup of G is a subgroup of H .

4. The reciprocal image of a subgroup of H is a subgroup of G .

Remark:

As special cases of the properties, Imf is a subgroup of $(H, *)$ and $Kerf$ is a subgroup of $(G, .)$.

Proposition:

Let $: G \to H$ be a group homomorphism, then.

1.f is injective if and only if

$$
Ker f = \{e\}.
$$

2. f is surjective if and only if

$$
\operatorname{Im} f = H.
$$

3. f is an isomorphism if and only if f^{-1} exists and is a group homomorphism from H into G .

Proof

Let $f: G \to H$ be a group homomorphism, then 1a. If f is injective, knowing that $e \in \ker f$ we'll show that

$$
ker f \subset \{e\}.
$$

 $f(x)=e'$

Let $x \in ker f$, then

and as

 $f(e)=e'$

we deduce that

$$
f(x)=f(e)
$$

and since f is injective we deduce that

 $x = e$

So

 $x \in \{e\}$

which shows that

$$
ker f = \{e\}.
$$

1b. Conversely, suppose $ker f = \{e\}$ and show that f is injective. Let $x, y \in G$, then

$$
f(x) = f(y)
$$

\n
$$
\Rightarrow f(x) * (f(y))^{-1} = e'
$$

\n
$$
\Rightarrow f(x) * f(y^{-1}) = e'
$$

\n
$$
\Rightarrow f(x.y^{-1}) = e'
$$

\n
$$
\Rightarrow x.y^{-1} \in ker f
$$

\n
$$
\Rightarrow x.y^{-1} = e \text{ because } ker f = \{e\}.
$$

\n
$$
\Rightarrow x = y
$$

which shows that f is injective.

2. The proof of this property is immediate, given that

$$
\operatorname{Im} f = f(G).
$$

3. We will restrict ourselves to showing that if f is an isomorphism, then $f^{-1}: H \to G$ is a homomorphism.

Let $x, y \in H$, then there exist $a, b \in G$ such that

$$
x = f(a) \t{e} \t{y} = f(b)
$$

so,

$$
a = f^{-1}(x)
$$
 et $b = f^{-1}(y)$

as a result

$$
f^{-1}(x * y) = f^{-1}(f(a) * f(b))
$$

= $f^{-1}(f(a.b))$
= $a.b$
= $f^{-1}(x) \cdot f^{-1}(y)$

which shows that f^{-1} is a group homomorphism from H into G.

4 Rings structure

Definition 2 We call a ring any set A equipped with two internal composition $laws + and$. such that:

1. $(A,+)$ is an abelian group (we will denote 0_A the neutral element of $+)$,

2. is associative and distributive with respect to $+$.

Remark 3 If in addition, is commutative, we say that $(A, +, .)$ is a commutative ring.

Remark 4 - If : accepts a neutral element, we say that $(A, +, .)$ is a unitary or uniferous ring.

Example 5 $(\mathbb{Z}, +, \times), (\mathbb{Q}, +, \times), (\mathbb{R}, +, \times)$ are unitary commutative rings.

Calculation rules in a Ring

Let $(A, +, \cdot)$ be a ring, then we have the following calculation rules: Properties : For all x, y and $z \in A$, we have 1. 0_A $x = x$. $0_A = 0_A$. 2. $x.(-y) = (-x).y = -(x.y).$ 3. $x.(y-z) = (x.y) - (x.z).$ 4. $(y-z).x = (y.x) - (z.x).$

Definition 6 If there exist in a ring $(A, +, .)$ two elements $a \neq 0_A$, $b \neq 0_A$:

$$
a.b=0_A
$$

we say that a and b are divisors of 0_A .

- We say that $(A, +, \cdot)$ is a complete ring if there exists no divisor of 0_A , i.e.

 $a.b = 0_A \Leftrightarrow a = 0_A \vee b = 0_A.$

Example 7 $(\mathbb{Z}, +, \times)$ is a complete ring.

4.1 Subrings

Definition 8 : A subset A' of $(A, +, .)$ is a subring if and only if: 1. $A' \neq \emptyset$.

2. $\forall x, y \in A', x - y \in A'.$ 3. $\forall x, y \in A', x.y \in A'.$

Example 9 $(n\mathbb{Z}, +, \times)$ is a subring of $(\mathbb{Z}, +, \times)$.

4.2 Homomorphismes of rings

Let $(A, +, .)$ and (B, \oplus, \otimes) be two rings and $f : A \to B$.

Definition 10 We say that fis a ring homomorphism if:

 $\forall x, y \in A, f(x+y) = f(x) \oplus f(y) \text{ et } f(x \cdot y) = f(x) \otimes f(y).$

- $I I f A = B$ we say that f is an endomorphism of rings.
- $I-f$ f is bijective, we say that f is an isomorphism of rings.
- $I-f$ f is bijective and $A = B$, we say that f is an automorphism of rings.

Definition 11 Let A and B be two unitary rings, we say that an homomorphism of rings f from A to B is unitary if $f(1_A) = 1_B$.

Proposition 12 Let $f : A \rightarrow B$ a ring homomorphism, so

 $- f$ is injective if and only if $ker f = \{0_A\}$

 $I f A$ and B are two unitary rings and f is a surjective ring homomorphism, then f is unitary.

 \overline{T} The image (respectively the reciprocal image) of a subring of A (respectively of B) by f is a subring of B (respectively of A).

5 Fields

Definition 13 A unitary ring $(K, +, \cdot)$ is said to be a field if every non-zero element of K is invertible.

If moreover, α is commutative, we say that K is a commutative field.

Example 14 $(\mathbb{R}, +, \times), (\mathbb{Q}, +, \times), (\mathbb{C}, +, \times)$ are commutative fields. $(\mathbb{Z}, +, \times)$ is not a field.

5.1 Subfields

Definition 15 A subset L' of $(K, +, .)$ is a subbody if and only if:

- 1. $L \neq \emptyset$.
- 2. $\forall x, y \in L, x y \in L.$
- 3. $\forall x, y \in L^*, x.y^{-1} \in L^* \text{ (where } L^* = L \{0_K\}).$

Example 16 $(\mathbb{Q}, +, \times)$ is a subfield of $(\mathbb{R}, +, \times)$.