
1 Algebraic structures

2 Law of internal composition

De�nition
Any application � : E � E ! E. on a set E is called a law of internal

composition. A subset F of E is said to be stable with respect to the law � if :

8a; b 2 F , a � b 2 F:

Example
Let A be a set and E = P (A), then intersection and reunion of sets are two

laws of internal compositions in E because : 8X, Y 2 P (A),

X \ Y � X � A,

and we have

8x; x 2 X [ Y ) (x 2 X) _ (x 2 Y )) (x 2 A) _ (x 2 A)) (x 2 A) ,

So
X [ Y � A,

Example
which shows that \ and [ are laws of internal compositions in P (A):
Example
Let F = ffa; bg; fa; cg; fb; cgg � P (fa; b; cg), then F is not stable with

respect to intersection and reunion, because :

9X = fa; bg; Y = fa; cg 2 F ; X \ Y = fag =2 F .

9X = fa; bg, Y = fa; cg 2 F ; X [ Y = fa; b; cg =2 F .

De�nition
If � and : are two internal composition laws on E, we say that :
1. � is commutative if :

8a; b 2 E, a � b = b � a.

2. � is associative if :

8a; b; c 2 E, (a � b) � c = a � (b � c).

3. �is distributive with respect to . if :

8a; b; c 2 E, a � (b:c) = (a � b):(a � c) et (b:c) � a = (b � a):(c � a).

4. e 2 E is a left (respectively right) neutral element of the � law if

8a 2 E, e � a = a (respectivelya � e = a).
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If e is a neutral element to the right and left of � we say that e is a neutral
element of �.
Example
Let F be a set and E = P (F ). Consider on E the internal composition laws

"\" and "[", then it�s very easy to show that:
�"\" and "[" are associative.
�"\" and "[" are commutative.
�? is the neutral element of [.
�F is the neutral element of \.
�\ is distributive with respect to [ and [ is distributive with respect to \.
Proposition
If an internal composition law � has a right-neutral element e0 and an e00

left-neutral element, then e0 = e00and it is a neutral element of �.
Proof
Let e0( respectively e00) be a right-neutral (respectively left-neutral) element

of �, then
e0 = e00 � e0 car e00élément neutre à gauche de � ,
e00 = e00 � e0 car e0élément neutre à droite de � ,

which shows that
e0 = e00:

Remark:
According to the latter property, if � has a neutral element, then it is unique.
De�nition:
Let � be an internal composition law on a set E admitting a neutral element

e. An element a 2 E is said to be invertible, or symmetrizable, to the right
(respectively left) of � if

9a0 2 E, a � a0 = e (respectively a0 � a = e),

and a0 is said to be a right-hand (respectively left-hand) inverse (or symmet-
rical) of a.
If there exists a0 2 E such that

a0 � a = a � a0 = e

a is said to be invertible (or symetrisable) and a0 is said to be an inverse (or
symmetric) of a with respect to �.
Remark:
The symmetric of an element is not always unique.
Example
Let E = fa; b; cg, we de�ne an internal composition law in E by :

� a b c
a a b c
b b c a
c c a a
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Note that :
- a is the neutral element of �.
�All elements of E are invertible with :
i) a is the inverse of a,
ii) c is the inverse of b,
iii) b and c are inverses of c.
Proposition
Let � be a law of internal composition in E, associative and admitting a

neutral element e. If an element x 2 E is symmetrizable, then its symmetric is
unique.
Proof
Say x1 is a right-hand inverse of x and x2 is a left-hand inverse of x, then

x � x1 = e et x2 � x = e

So,

x1 = e � x1 = (x2 � x) � x1
= x2 � (x � x1) because � is associative
= x2 � e = x2:

Proposition
Let � be a law of internal composition in a set E, associative and admitting

a neutral element e, then if a and b are two invertible (symmetrizable) elements
so will be (a � b) and we have :

(a ? b)�1 = b�1 � a�1 where a�1 is the inverse element of a

Proof
Let a; b 2 E be two invertible elements, then

(a ? b) � b�1 � a�1 = a ?
�
b � b�1

�
� a�1

= (a ? e) � a�1 = a � a�1 = e.

In the same way, we show that�
b�1 � a�1

�
� (a ? b) = e,

we deduce that (a � b) is invertible and that

(a ? b)�1 = b�1 � a�1.

3 Group structure

De�nition
We call a group, any non-empty set G provided with an internal composition

law � such that :
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1. � is associative ,
2. � has a neutral element e ,
3. Every element of G is symmetrizable.
If moreover � is commutative, we say that (G; �) is a commutative group, or

Abelian group.
Example
(R�;�) is a commutative group, � is the usual multiplication. Let�s check

each of the properties:
1. If x; y 2 R� then

x� y 2 R�:

2. For all x; y; z 2 R�, then

x� (y � z) = (x� y)� z;

is the associativity of multiplication of real numbers.
3. 1 is the neutral element for multiplication because

1� x = x and x� 1 = x;

whatever x 2 R�.
4. The inverse of an element x 2 R�} is

x�1 =
1

x

(because x� 1

x
=1).

Note in passing that we had excluded 0 from our group, as it has no inverse.
These properties make (R�;�) a group.

x� y = y � x;

- (Q�;�), (C�;�) are commutative groups.
- (Z;+) is a commutative group. Here + is the usual addition.
1. If x, y 2 Z then

x+ y 2 Z:

2. For all x; y; z 2 Z then

(x+ y) + z = x+ (y + z) :

3. 0 is the neutral element for addition.

0 + x = x and x+ 0 = x;

whatever x 2 Z..
4. The inverse of an element x 2 Z is

x0 = �x
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because
x+ (�x) = 0

5. Finally
x+ y = y + x;

and therefore (Z;+) is a commutative group.
- (Q;+), (R;+), (C;+) are abelian groups.

3.1 Subgroups

De�nition
Let (G; �) be a group, and let G0 be a non-empty subset of G, we say that

G0�is a subgroup of (G; �) if :�
(i) 8a; b 2 G0, a � b 2 G0
(ii) 8a 2 G0, a�1 2 G0 .

Example
Let n 2 N, then

nZ = fn:p; p 2 Zg

is a subgroup of Z.
Indeed:
i) Let x, y 2 nZ then there exist p1, p2 2 Z such that

x = n:p1ety = n:p2;

so,
x+ y = n:p1 + n:p2 = n: (p1 + p2) 2 nZ.

ii) Let x 2 nZ then 9 p 2 Z such that

x = n:p:

Let x0 be the symmetric of x, so,x+ x0 = e = 0

(o is the neutral elementof (Z;+));

) x0 = �x = �n:p = n: (�p) 2 nZ.

From i) and ii) we deduce that nZ is a subgroup of Z.
Proposition:
Let (G; �) be a group and G0 � G, then

G0is a subgroup of G,
�

(1) G0 6= ?
(2) 8a; b 2 G0, a � b�1 2 G0 .

Proof
I. Let G0 be a subgroup of (G; �)), then:
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1) � has a neutral element in G0 because

8a 2 G0; a�1 2 G0(according to (ii) of the de�nition).

according to (i), we have

a � a�1 = e 2 G0,

So
G0 6= ?:

2) Let a; b 2 G0, from (ii) we have b�1 2 G0, so

a � b�1 2 G0(according to (i) ):

II. Conversely, let G0 be a subset of G such that�
(1) G0 6= ?

(2) 8a, b 2 G0, a � b�1 2 G0 .

1) Since G0 6= ?, then there exists a 2 G0 and according to the second
hypothesis we have

e = a � a�1 2 G0.
2) Let x 2 G0, as e 2 G0�then according to the second hypothesis we will

have
x�1 = e � x�1 2 G0.

3) 8x, y 2 G0, from ii) we have

x � y = x �
�
y�1

��1 2 G0,
therefore, G0is a subgroup of G.
Remark
From I) of the proof of the previous proposition, we see that: If e is the

neutral element of a group ((G; �), then every subgroup of G contains e and we
deduce the following corollary.
Corollary
Let (G; �) be a group, e the neutral element of � and G0 a subset of G,then

G0 is a subgroup of G if and only if:�
(1) e 2 G0

(2) 8a, b 2 G0, a � b�1 2 G0 .

Example
Let the group

�
R2;+

�
with the operation + be de�ned by :

(a; b) + (c; d) = (a+ c; b+ d)

So,
H =

�
(a; b) 2 R2=a+ 2b = 0
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is a subgroup of R2.
Indeed:
i) H 6= ? because (0; 0) 2 H.
ii) Let (a; b), (c; d) 2 H, then�

a+ 2b = 0
c+ 2d = 0

,

Example 1 so,

(a� c) + 2 (b� d) = 0,

as a result,
(a� c; b� d) = (a; b) + (�c;�d) 2 H.

From i) and ii) we deduce that H is a subgroup of R2.

3.2 Homomorphisms of groups

De�nition
An application f : (G; :) ! (H; �) is called a group homomorphism of G in

H if :
8a; b 2 G, f(a:b) = f(a) � f(b).

- If f is bijective, we say that f is an isomorphism (of groups) of G onto H.
We then say that G is isomorphic to H, or that G and H are isomorphic.
- If G = H , we say that f is an endomorphism of G, and if moreover f is

bijective, we say that f is an automorphism (of group) of G.
Example
Given the groups (R;+) and (R�; :), then the applications

f : (R;+)! (R�; :) et g : (R;+)! (R�; :)
x 7�! expx x 7�! ln jxj

are homomorphisms of groups
De�nition
Let f : G! H be a group homomorphism with e and e0 the neutral elements

of G and H respectively. We call the kernel of f the set

Kerf = f�1 (e0) = fx 2 G; f (x) = e0g ,

and the image of f the set

Im f = f (G) = ff (x) ; x 2 Gg .

Properties:
Let f : G! H be a homomorphism of groups, then
1. f (e) = e0.
2. 8a 2 G, (f (a))�1 = f

�
a�1

�
.
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3. The image of a subgroup of G is a subgroup of H .
4. The reciprocal image of a subgroup of H is a subgroup of G.
Remark:
As special cases of the properties, Imf is a subgroup of (H; �) and Kerf is a

subgroup of (G; :).
Proposition:
Let : G! H be a group homomorphism, then.
1.f is injective if and only if

Kerf = feg:

2. f is surjective if and only if

Im f = H:

3. f is an isomorphism if and only if f�1 exists and is a group homomorphism
from H into G:
Proof
Let f : G! H be a group homomorphism, then
1a. If f is injective, knowing that e 2 kerf we�ll show that

kerf � feg:

Let x 2 kerf , then
f(x) = e0

and as
f(e) = e0

we deduce that
f(x) = f(e)

and since f is injective we deduce that

x = e

So
x 2 feg

which shows that
kerf = feg:

1b. Conversely, suppose kerf = feg and show that f is injective.
Let x; y 2 G, then

f(x) = f(y)

) f(x) � (f(y))�1 = e0

) f(x) � f(y�1) = e0

) f(x:y�1) = e0

) x:y�1 2 kerf
) x:y�1 = e because kerf = feg:
) x = y
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which shows that f is injective.
2. The proof of this property is immediate, given that

Im f = f(G):

3. We will restrict ourselves to showing that if f is an isomorphism, then
f�1 : H ! G is a homomorphism.
Let x; y 2 H, then there exist a; b 2 G such that

x = f(a) et y = f(b)

so,
a = f�1 (x) et b = f�1 (y)

as a result

f�1 (x � y) = f�1 (f(a) � f(b))
= f�1 (f(a:b))

= a:b

= f�1 (x) : f�1 (y)

which shows thatf�1 is a group homomorphism from H into G.

4 Rings structure

De�nition 2 We call a ring any set A equipped with two internal composition
laws + and : such that:
1. (A;+) is an abelian group (we will denote 0A the neutral element of +),
2. : is associative and distributive with respect to +.

Remark 3 If in addition, : is commutative, we say that (A;+; :) is a commu-
tative ring.

Remark 4 - If : accepts a neutral element, we say that (A;+; :) is a unitary or
uniferous ring.

Example 5 (Z;+;�), (Q;+;�),(R;+;�) are unitary commutative rings.

Calculation rules in a Ring
Let (A;+; :) be a ring, then we have the following calculation rules:
Properties :
For all x; y and z 2 A, we have
1. 0A :x = x: 0A = 0A.
2. x:(�y) = (�x):y = �(x:y).
3. x:(y � z) = (x:y)� (x:z).
4. (y � z):x = (y:x)� (z:x).
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De�nition 6 If there exist in a ring (A;+; :) two elements a 6= 0A, b 6= 0A:

a:b = 0A

we say that a and b are divisors of 0A:
- We say that (A;+; :) is a complete ring if there exists no divisor of 0A, i.e.

a:b = 0A , a = 0A _ b = 0A.

Example 7 (Z;+;�) is a complete ring.

4.1 Subrings

De�nition 8 : A subset A0of (A;+; :) is a subring if and only if:
1. A0 6= ?:
2. 8x; y 2 A0, x� y 2 A0.
3. 8x; y 2 A0, x:y 2 A0.

Example 9 (nZ;+;�) is a subring of (Z;+;�).

4.2 Homomorphismes of rings

Let (A;+; :) and (B;�;
) be two rings and f : A! B:

De�nition 10 We say that �s a ring homomorphism if:

8x; y 2 A; f(x+ y) = f(x)� f(y) et f(x:y) = f(x)
 f(y).

�If A = B we say that f is an endomorphism of rings .
�If f is bijective, we say that f is an isomorphism of rings.
�If f is bijective and A = B, we say that f is an automorphism of rings.

De�nition 11 Let A and B be two unitary rings, we say that an homomor-
phism of rings f from A to B is unitary if f (1A) = 1B :

Proposition 12 Let f : A! B a ring homomorphism, so
�f is injective if and only if kerf = f0Ag
�If A and B are two unitary rings and f is a surjective ring homomorphism,

then f is unitary.
�The image (respectively the reciprocal image) of a subring of A (respectively

of B) by f is a subring of B (respectively of A).

5 Fields

De�nition 13 A unitary ring (K;+; :) is said to be a �eld if every non-zero
element of K is invertible.
If moreover, : is commutative, we say that K is a commutative �eld.

Example 14 (R;+;�), (Q;+;�), (C;+;�) are commutative �elds.
(Z;+;�) is not a �eld.
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5.1 Sub�elds

De�nition 15 A subset L0 of (K;+; :) is a subbody if and only if:
1. L 6= ?:
2. 8x; y 2 L, x� y 2 L.
3. 8x; y 2 L�, x:y�1 2 L� (whereL� = L� f0Kg).

Example 16 (Q;+;�) is a sub�eld of (R;+;�).
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