Exercise Series No. 04

Exercise 1: We endow \mathbb{R}^+ with the internal composition law defined by:

$$\forall x, y \in \mathbb{R}^+, \quad x * y = \sqrt{x^2 + y^2}.$$

- 1. Show that * is commutative, associative, and admits a neutral element.
- 2. Determine the invertible elements.

Exercise 2: Show that (G, *) is a group in the following cases and specify if it is abelian (commutative):

1.
$$x * y = \frac{x+y}{1+xy}$$
, on $G =]-1, 1[;$
2. $(x, y) * (x', y') = (x + x', ye^{x'} + y'e^{-x})$, on $G = \mathbb{R}^2$

Exercise 4: Let (G, \times) be a group. Prove that the following subsets are subgroups of G:

- 1. $C(G) = \{x \in G : \forall y \in G, xy = yx\}$, where C(G) is called the center of G;
- 2. $aHa^{-1} = \{aha^{-1} : h \in H\}$, where $a \in G$ and H is a subgroup of G.

Exercise 5: Are the following applications group homomorphisms? If so, compute the kernel and the image, and deduce whether they are group isomorphisms or automorphisms.

1. $\varphi : (\mathbb{R}^*, \times) \to (\mathbb{R}^*, \times), \quad \varphi(x) = x^n, n \in \mathbb{N}^*;$ 2. $\varphi : (\mathbb{R}, +) \to (\mathbb{C}^*, \times), \quad \varphi(t) = e^{2\pi i t}.$