UNIVERSITE UNIVERSITE LARBI BEN M'HIDI – OUM EL BOUAGHI

Analyse Numérique (S3 2024-2025)

Département S.M.

Série N°1: « Interpolation Polynômiales»

Exercice 01 : Donner le polynôme d'interpolation de la fonction f dont on connait les valeurs suivantes

$$(0,1)$$
; $(1,1)$; $(2,2)$; $(3,3)$

- 1. Par la méthode directe.
- 2. Par la méthode de Lagrange.

Exercice 02:

L'Algérie recense sa population presque tous les dix ans. La table ci dessous résume les résultats du recensement dans la période 1977-2008

Année	1977	1987	1998	2008
Population	16063821	22715633	29100867	34080030

En analysant ces données, peut on savoir quelle était la population en 1980 ?

Exercice 03 : En relevant toutes les 10 secondes la vitesse d'écoulement de l'eau dans une conduite cylindrique, on a obtenu :

t(s)	0	10	20	30
V (m/s)	2,00	1, 89	1, 72	1, 44

- 1. Construire le polynôme de Lagrange passant par les 3 premiers points.
- 2. Construire le polynôme de Lagrange passant par les 4 premiers points. Est –ce possible d'utiliser les calculs faits en 1. ?
- 3. Donner l'expression analytique de terme d'erreur pour les polynômes obtenus en 1. et 2.
- 4. Trouver une approximation de la vitesse en t = 15 à l'aide des deux polynômes obtenus.

Exercice 4 : Refaire l'exercice 4 en utilisant la méthode de Newton.

Exercice 05:

- (a) Trouver le polynôme qui interpole la fonction $f(x) = \ln(x)$ aux nœuds $x_0 = 1$; $x_1 = 2$ et $x_2 = 3$ en utilisant la méthode de Newton-Gregory progressive.
- (b)Donner une estimation de l'erreur d'interpolation en $x = \frac{3}{2}$ en prenant comme nœud supplémentaire x = 4 (c)Calculer une borne supérieure de l'erreur en $x = \frac{3}{2}$.
- (d) Sur l'intervalle [2, 3], le graphe du polynôme trouvé en b) est-il au-dessus de celui de f(x), ou en dessous.

Exercice 06 : Etant données les valeurs suivantes :

$$\log 2.0 = 0.30103$$
; $\log 2.1 = 0.32222$; $\log 2.2 = 0.34242$; $\log 2.3 = 0.36173$ $\log 2.4 = 0.38021$; $\log 2.5 = 0.39794$; $\log 2.6 = 0.41497$; $\log 2.7 = 0.43136$

Calculer log 2,63 en utilisant les polynômes d'interpolation de Newton de degré 3 et 4 les plus appropriés (le choix des points utilisés doit être fait de façon à minimiser l'erreur d'interpolation)

Exercice 07 : (effet de Runge TP) soit la fonction $f(x) = \frac{1}{1+x^2}$ définie sur [-5,5], comparer f et P_n le polynôme d'interpolation de Lagrange on représente ces deux fonctions sur un même graphique pour n=5,10,20.