
1

Chapter 4: The MERISE Method

Part I: General Overview of the MERISE Methodology

Introduction

MERISE was developed around 1978-1979 by a team led by J.L. Lemoigne at the
University of Aix-en-Provence. It emerged in response to the limitations of existing
methods, such as MINOS and CORIG, amidst the technological transformations of the
1970s and numerous studies on database systems. MERISE stands for "MEthode
d’étude et de Réalisation Informatique pour les Systèmes d'Entreprises" (Method for
Studying and Realizing Information Systems for companies).

MERISE is based on:

• A holistic view of the enterprise: Setting up an Information System (IS) is tied to
reorganizing the enterprise.

• A systemic view of the enterprise, represented by the concept of a
"macroscope."

The MERISE method establishes both principles and an approach. This approach
involves a series of stages, incorporating various disciplines.

"MERISE": MEthodes pour Rassembler les Idées Sans Effort (Methods for Assembling
Ideas Effortlessly).

One of the key aspects of MERISE is to conduct separate studies of data and processes.
Initially, these two studies are handled independently. MERISE also thoroughly
addresses organizational aspects.

Philosophy of the Method

A. The Three Cycles

The MERISE method is structured around three cycles, or axes:

1. The Life Cycle: This cycle defines how each stage follows from the previous one.
It includes three main phases:

o Conception: Studying the current system and designing the future
system.

o Implementation: Covers the setup and operational phase of the system.
o Maintenance: Ensures that the system evolves and adapts to

environmental changes and new objectives throughout its lifetime,
eventually leading to its replacement.

2

2. The Abstraction Cycle: This cycle focuses on how to specify an Information
System (IS):

o Data memory is described at conceptual, logical, and physical levels.
o Process operations are described conceptually, organizationally, and

operationally.

Each layer is represented through a model. Changes in lower layers don’t affect
higher layers unless they directly impact the parameters of the layer in
question. Each model is defined using formalized rules, principles, vocabulary,
and syntax. Transition rules allow for automatic or semi-automatic movement
from one model to another.

3. The Decision Cycle: Throughout the study and maintenance phases, decisions
must be made. These decisions start broadly at the general management level
and become increasingly detailed. Global decisions are handled by senior
management, while consultation at each level is required for more specific
choices.

Example: A decision on how to organize a user’s screen layout should not be made
without consulting the individual who will be using the screen regularly.

B. The Stages of MERISE

The design and development process of a system in MERISE is divided into several
stages:

1. Master Plan: Defines the overall strategic approach and objectives for the
system.

2. Preliminary Study: Conducts an initial analysis to assess the current situation
and system needs.

3. Detailed Study: Provides an in-depth examination of system requirements and
specifications.

4. Technical Study: Outlines the technical aspects required for implementation,
including hardware and software specifications.

5. Software Production: Involves developing the necessary software components
according to the design specifications.

6. Implementation: Encompasses the deployment and operationalization of the
system.

Each stage plays a crucial role in building a coherent system aligned with the
organization's goals and resources.

3

C. A Multi-Level Approach

MERISE addresses various challenges at different levels, acknowledging issues like
hardware or software changes, new regulations, and other contextual shifts. This
results in three primary levels, each with distinct concerns:

1. Conceptual Level: Defines the enterprise’s main objectives and management
rules, reflecting the organization’s goals and constraints. This level is generally
the most stable and includes functions such as personnel management,
accounting, etc.

2. Logical Level: Specifies the organizational structure required to meet
objectives, including job roles, operational sequences, and the nature of various
processes.

3. Technical Level: Details the technical resources (hardware/software) necessary
to implement the project. This level is subject to frequent changes.

Data and Process Models by Level

Each level consists of data and process models:

• Conceptual Level: Conceptual Data Model (CDM) and Conceptual Process
Model (CPM).

• Logical Level: Logical Data Model (LDM) and logical Process Model (LPM).
• Technical (Physical) Level: Physical Data Model (PDM) and physical Process

Model (PPM).

Additional stages include:

• Study of the Existing System: A necessary preliminary analysis for designers
unfamiliar with the domain.

• Validation: Ensures that each level produces documentation and project files
required for review and future reference.

D. Study of the Existing System

For a designer new to the area being studied, examining the existing system is
essential. This involves:

1. Understanding the Domain in Detail: Gaining a comprehensive knowledge of
the study area.

2. Identifying All Objectives: Listing all goals pursued by the enterprise in this
domain.

If a master plan exists, some of this work may already be done.

During the study of the current system, two types of entities provide input:

4

• Workstation: Offers detailed knowledge of specific tasks.
• Management: Provides a broad overview and lists all goals within the domain.

Information Collection Techniques:

Several techniques may be used to gather information, including:

• Interviews: Direct contact facilitates a deep understanding.
• Questionnaires
• Surveys
• Other methods as needed.

The information gathered is structured for analysis. Interviews vary according to the
type of entity:

1. Management Interviews:
o Initial understanding of the issue.
o Listing objectives.
o Identifying key workstations.
o Defining interfaces with other projects.
o Setting boundaries for the study area.

Results:

o Main objectives.
o List of workstations.
o General quantifications.
o Study boundaries.
o Constraints in terms of:

▪ Resources (material, human, financial).
▪ Timelines (desired completion times).
▪ Regulations (labor law, general accounting rules, etc.).

2. Workstation Interviews:
o Document and describe tasks performed.
o Observe information flow.
o Learn the organization's terminology.

Results:

o Task documentation.
o Data collection.
o List of business rules.

Part II. Data Modeling (Conceptual Level)

5

This phase involves creating the Conceptual Data Model (CDM), which is a graphical
and structured representation of the information stored by an IS. The CDM is based
on two main elements: entities and associations, which give it the alternative name
"Entity-Association Diagram."

The process of creating the CDM includes:

1. Establishing business rules (if they haven’t been provided).
2. Developing the data dictionary.
3. Identifying functional dependencies among data items.
4. Creating the CDM (defining entities, associations, and cardinalities).

A. Business Rules

Before defining tables (or entities and associations in conceptual terms), it’s necessary
to gather the future users’ requirements. From these, the developer should be able to
establish the business rules governing the data to be stored.

Example: Suppose a developer needs to digitize the information system of a library.

• For each book, the title, publication year, summary, and genre (e.g., novel,
poetry, science fiction) must be known.

• A book may have zero (for anonymous works), one, or multiple authors, with
details such as name, first name, date of birth, and country of origin recorded.

• Each book copy is identified by a unique reference code of letters and numbers,
and each belongs to a single edition.

• Each registered user has a unique ID, along with their name, address, phone
number, and email.

• Each registered user can borrow zero, one, or more books, with each loan
covering one specific copy. The loan date and allowed duration (in days) are
recorded.

The business rules of this system are defined as follows:

• A book may have zero (for anonymous works), one, or multiple authors

• Each book copy belongs to a single edition

• Each registered user can borrow zero, one, or more books,

• Each loan covering one specific copy.

If users do not provide clear rules, it’s often the developer’s responsibility to establish
them. Developers may need to guide users through this process, as required.

6

B. Data Dictionary

This is an intermediate step, especially useful when multiple people work on the same
large database. The data dictionary is a document listing all data items to be stored in
the database (and that will appear in the CDM). For each data item, it indicates:

• Mnemonic Code: A label for the data (e.g., “title_b” for book title).
• Designation: A description of the data item (e.g., “title of the book”).
• Data Type:

o A (Alphabetic): Letters only.
o N (Numeric): Numbers only.
o AN (Alphanumeric): Letters and numbers.
o Date: Date format (YYYY-MM-DD).
o Boolean: True or False.

• Size: Expressed in characters or digits. For a date (e.g., YYYY-MM-DD), it would
be 10 characters.

• Remarks: Additional comments, such as if a value must be positive.

Mnemonic code Designation Data type Size Remarks

Book_ID Numeric identifier
of a book

N

Book_Title Title of a book AN 50

Book_year Year of
publication of a
book

N 4

Book_Summ Summary of a
book

AN 1000

Au_ID Identifier of an
author

N

Au_Name Name of an
author

A 30

Au_FName First name of an
author

A 30

Au_Date Date of birth of an
author

Date

C. Functional Dependencies

A functional dependency (FD) exists when two properties (data items) P1 and P2 are
related, such that each P1 value corresponds to exactly one P2 value. This dependency
is represented as follows:

7

It is said that P1 is the source of the DF and that P2 is its goal. Moreover, multiple
properties can be the source, just as multiple properties can be the goal of a DF.

By referring to the previous data dictionary, the following DFs can be established:

Book_ID➔ Book_Title, Book_year, Book_Summ

Au_ID➔ Au_Name, Au_FName, Au_Date

Functional dependencies allow the identification of business rules, such as:

• From a book ID, retrieve title, publication year, summary, genre ID, and edition.
• From a author ID, retrieve name, first name and date of birth of this author.

Functional dependency properties include reflexivity, augmentation, transitivity,
union, decomposition, and pseudo-transitivity.

Reflexivity

Augmentation

Transitivity
Union
Decomposition
Pseudo-transitivity

A Functional Dependency Graph (FDG)

FDG can also be used to represent a functional dependency.

Example:

Transitive Closure
Let F be a set of functional dependencies. The transitive closure of F, denoted F+, is
obtained by adding all the transitive functional dependencies to F.

8

A minimal cover, denoted as F*, is the set of essential and direct functional
dependencies needed for the system.

Part III: Conceptual Data Model (CDM)

Introduction

The main objective is the creation of a physical database (internal model)
containing information related to the organization’s activities. The data to be used
within the organization constitutes the perceived reality.

The transition from perceived reality to the internal model is achieved through an
intermediate level: the conceptual level. The conceptual model is a synthesis of the
perceptions of reality by the various actors within the organization.
It is unique and independent of any technological constraints.
An actor's perception will be represented as an external model.

A database design method must:

• Specify the formalisms to be used to describe the models at each level;
• Define the interfaces between the levels;
• Define tools to design each of the models.

Basic Concepts

An entity is a fundamental concept in database design that represents a distinct
object or concept in the real world that is relevant to the system being modeled. It
serves as a container for storing data about an object or concept, which is described
by its attributes (or properties).

Key Characteristics of an Entity:

1. Uniqueness: Each entity must be uniquely identifiable within its context,
typically through a unique attribute called the identifier or primary key.

2. Attributes: An entity is described by a set of attributes, which are
characteristics or properties of the entity.

3. Occurrences: An entity can have multiple instances (or occurrences), each
representing a specific instance of the object it models.

4. Relationships: Entities can be linked to one another through associations or
relationships to define interactions between them.

9

Formal Structure of an Entity:

• Entity Name: The label that identifies the type of object (e.g., "Author,"
"Book").

• Identifier: A unique property or combination of properties that distinguishes
each occurrence.

• Attributes: Properties that describe the entity.

Example of an Entity: Author

Occurrence Example:

If the entity "Author" contains three occurrences, the table might look like this:

ID_A NAME FIRST NAME DATE OF BIRTH

001 Smith John 1970-05-15
002 Johnson Emily 1982-10-23
003 Brown Michael 1995-07-08

Association

An association is a concept in database design that represents a semantic link or
relationship between two or more entities. It describes how the entities interact with
one another and helps translate additional business rules that cannot be captured
through the individual definition of entities.

Key Characteristics of an Association:

1. Entities Involved: Associations link one or more entities together.
2. Cardinality: Defines the number of instances of one entity that can be

associated with instances of another entity (e.g., one-to-one, one-to-many,
many-to-many).

10

3. Attributes: Some associations have their own properties that describe the
relationship.

Formal Structure of an Association:

• Association Name: Describes the relationship (e.g., "Writes," "Borrows").
• Entities: The entities involved in the relationship.
• Attributes (Optional): Properties specific to the association.
• Cardinality: Specifies the rules of the relationship (e.g., 1, M).
• "Author writes Book" This association links the "Author" and "Book" entities

and captures the business rule that an author can write one or more books.

Structure:

Example of an Association:

Here, the "being born" association translates to the following two business rules:

• An author is born in exactly one country.

• In a country, there are no, one, or several authors born.

You will notice that this association is characterized by these annotations (1,1) and

(0,N), which allowed us to define the previous business rules. These annotations are

called cardinalities.

Cardinalities in the context of databases, entity-relationship (ER) diagrams, or data

modeling refer to the number of instances of one entity that can or must be

associated with an instance of another entity. Cardinality defines the allowable

number of relationships between two entities.

Cardinalities are expressed as pairs of numbers: (minimum, maximum), and they

specify the rules of participation in the relationship.

Here are the common types of cardinalities:

11

1. (1,1):

o One-to-One relationship. Each instance of an entity is associated with

exactly one instance of another entity.

o Example: Each person has exactly one passport.

2. (0,1):

o Zero or One relationship. An entity instance can either be associated

with no instance or exactly one instance of another entity.

o Example: A student may or may not have a scholarship.

3. (0,N):

o Zero or Many relationship. An entity instance can be associated with

zero or multiple instances of another entity.

o Example: A book can have zero or more authors.

4. (1,N):

o One or Many relationship. An entity instance must be associated with

at least one, but possibly many, instances of another entity.

o Example: A teacher must teach at least one course.

5. (M,N) (less common):

o Many-to-Many relationship. Both entities can be associated with

multiple instances of the other entity.

o Example: Students can enroll in multiple courses, and each course can

have multiple students.

These cardinalities help define the structure and rules of data relationships,

ensuring the integrity of the system and accurate representation of real-world

constraints.

Dimension of an Association

A relation can be unary (connecting an entity to itself), binary (connecting two

entities), or ternary (connecting three entities).

12

