Exercise 8 Let (X, τ) be a topological space, A a topological subspace of X and B a subset of A.

- i) Show that the closure of B in A is equal to $A \cap \overline{B}$.
- ii) Show that the set of accumulation points of B in A is equal to $A \cap B'$.
- iii) Show that the interior of B in A contains the interior of B in X (no equality in general).
- iv) Show that if A is open in X, then the interior of B in A coincides with the interior of B in X.

Exercise 9 Let X be a topological space. Show that an application f from X to \mathbb{R} (equipped with the usual topology) is continuous if and only if $f^{-1}(]a, +\infty[)$ and $f^{-1}(]-\infty, a[)$ are open whatever $a \in \mathbb{R}$.

Exercise 10 Let f, g be two continuous applications from X to Y, topological spaces, Y being separated.

- 1. Show that the set $\{x \in X ; f(x) = g(x)\}$ is closed in X.
- 2. Deduce that if f and g coincide on an everywhere dense subset of X, then f = g.

Exercise 11 Let X, Y be topological spaces and A, B be non-empty subsets of X such that $X = A \cup B$. Let $f_1 : A \to Y$ and $f_2 : B \to Y$ be two continuous applications such that for all $x \in A \cap B$, we have $f_1(x) = f_2(x)$. We set:

$$f(x) = \begin{cases} f_1(x) & \text{if } x \in A, \\ f_2(x) & \text{if } x \in B. \end{cases}$$

- 1. Let U be a subset of Y. Determine $f^{-1}(U)$ in terms of $f_1^{-1}(U)$ and $f_2^{-1}(U)$.
- 2. Deduce that if A and B are open (resp. closed), then f is continuous.

Exercise 12 We take $X = [0, 1[\cup \{2\}, Y =]0, 1]$ (each equipped with the topology induced by the usual topology of \mathbb{R}) and we consider the application $f : X \to Y$ given by

$$f(x) = \begin{cases} x & \text{if } 0 < x < 1, \\ 1 & \text{if } x = 2. \end{cases}$$

- 1. Verify that f is a bijection and determine its reciprocal f^{-1} .
- 2. Verify that f is continuous on X.
- 3. Show that f^{-1} is not continuous at 1 (We can consider the real sequence with general term $x_n = 1 \frac{1}{n}$). Conclude.

Exercise 13 Let X and Y be two homeomorphic topological spaces.

- 1. Show that X is separated if and only if Y is separated.
- 2. Show that X is separable if and only if Y is separable.