

Larbi Ben M'hidi University

Faculty of Exact Sciences, Natural Sciences and Life Sciences

Department of Mathematics and Computer Science

Physics 1

Mechanics of the material point

Dr. Souheyla Gagui souheyla.gagui@univ-oeb.dz

Mechanics of the material point

Chapter 1: Kinematics of a material point

- **Movement characteristics**
- **Rectilinear motion**
- **Motion in a Plane**
- **Movement in space**
- **Relative motion**

Rectilinear motion

1. Uniform Rectilinear Motion

- *2. Uniformly Varied Rectilinear Motion*
- *3. Rectilinear motion with variable acceleration*
- *4. Sinusoidal rectilinear movement*

Rectilinear motion

Rectilinear motion is a motion of a material point along a trajectory is a straight line.

1. Uniform rectilinear motion

It is a Uniform rectilinear motion that has <u>zero acceleration</u> $(\vec{a} = 0)$ *and a constant velocity* $\vec{v} = \vec{c}$ *.*

Time equation of Uniform rectilinear motion

We choose the OX axis as a rectilinear reference and we put the initial condition :

$$
at t=0 s \rightarrow x=x_0
$$

To obtain the expression of the x as a function of time, it is necessary to integrate the expression for the velocity.

$$
\Rightarrow dx = vdt \Rightarrow \int_{x_0}^x dx = \int_{t_0}^t vdt \Rightarrow \mathbf{x} \mid \frac{x}{x_0} = vt \mid \frac{t}{0}
$$

Online courses 5

We have :

 $x=f(t)$?

v=

 \boldsymbol{dx}

 \boldsymbol{dt}

The graphical representation of displacement, velocity and acceleration as a function of time for uniform rectilinear motion as follows :

Example 1

The time equations of the motion of a material point are :

 $\boldsymbol{x} =$ \boldsymbol{t} 3 $+ 1$; $y = 3t + 6$; $z = 0$ (all units are in the international system). *Show that the motion is rectilinear and uniform*

Solution

Let's first prove the motion is rectilinear by finding the trajectory equation.

$$
\begin{cases}\nx = \frac{t}{3} + 1 \\
y = 3t + 6\n\end{cases}\n\Rightarrow\n\begin{cases}\nx - 1 = \frac{t}{3} \\
y = 3t + 6\n\end{cases}\n\Rightarrow\n\begin{cases}\nt = 3(x - 1) \\
y = 3t + 6\n\end{cases}
$$
\n(1)\n(2)\n
$$
\Rightarrow\ny = 3 \times 3(x - 1) + 6 \Rightarrow y = 9x - 9 + 9
$$
\n(3)

Equation of a straight line, so the movement is rectilinear.

For this movement to be uniform, the Velocity must be constant.

We have the position vector is:
$$
\vec{r} = \overrightarrow{OM} = \left(\frac{t}{3} + 1\right)\vec{i} + (3t + 6)\vec{j} + 0\vec{k}
$$

The velocity vector is :

$$
\vec{v} = \frac{d\vec{OM}}{dt} = \frac{1}{3}\vec{i} + 3\vec{j}
$$

$$
v = \sqrt{\left(\frac{1}{3}\right)^2 + 3^2} = 3.01 \ (m/s) = C
$$

v= C *This indicates that the movement is uniform.*

The movement rectilinear and uniform.

2. Uniformly Varied Rectilinear Motion

It is a rectilinear motion with constant acceleration $\vec{a} = \vec{c}$)

Time equation of Uniformly Varied Rectilinear Motion

We have: $a =$ *We put the initial condition :* \int_{0}^{1} *at t=0 s* \rightarrow *v=v*₀ \boldsymbol{dv} $\frac{du}{dt}$ \Rightarrow $dv = adt$ $v\vert\frac{v}{v}$ v_{0} $=$ at \int_0^t $v - v_0 = a(t-0)$

If we take the initial condition : \int at $t=0$ s \rightarrow $x=x_0$

We have:
$$
\mathbf{v} = \frac{dx}{dt} = \mathbf{a}t + v_0 \implies dx = (\mathbf{a}t + v_0)dt
$$

$$
\Rightarrow \int_{x_0}^x dx = \int_{t_0}^t (at + v_0) dt \Rightarrow x \Big|_{x_0}^x = \frac{at^2}{2} + v_0 t \Big|_0^t
$$

Equation Uniformly Varied Rectilinear motion

The graphical representation of acceleration, velocity and displacement as a function of time for Uniformly Varied Rectilinear Motion as follows.

Position – time graph

Example 2

A point body moves in the axis OX such that its velocity at time 't' is given by :

 $v = 3t - 9$

1-Find the time equation of this movement knowing that at time $t = 0$ *,* $\chi = 3$ *m. 2-Deduce the equation of acceleration. What is the nature of the movement?*

We have:
$$
\begin{cases} t = 0 & (1) \rightarrow \mathbf{x} \\ x = 3m & (2) \end{cases}
$$

\n
$$
\mathbf{x} \leftrightarrow 3m = \frac{3(0)^2}{2} - 9(0) + x_0 \implies x_0 = 3m
$$
 (2)
\n
$$
\mathbf{x} = \frac{3}{2}t^2 - 9t + 3
$$

\nEquation of the movement
\n $a(ms^{-2})$
\n $v_0 (m/s)$
\n $x = \frac{dv}{dt} = 3(ms^{-2}) \implies a = \frac{3}{2}(\text{mg} - \text{mg} - \text{g} - \text{g$

The acceleration is constant

 $a = 3$ (ms⁻²)

The movement is Uniformly Varied Rectilinear

3. Rectilinear motion with variable acceleration

If a material point's trajectory is a straight line and its acceleration is a function of time (a=f(t) variable) , then its movement is said to be rectilinear with variable acceleration.

Example 3

A particle is moving on the x-axis. At time t=0, the particle is at the pointe where x=4m.The velocity of the particle at time t i s (−t² +9t)(m/s). *1-Find the equation of acceleration. What is the nature of the movement? 2- Deduce the expression for the displacement of the particle from at time t=0 .* **Solution**

$$
1-We \text{ have}: v = -t^2 + 9t \implies a = \frac{dv}{dt} = -2t + 9 \implies a = -2t + 9 \boxed{a=f(t)}
$$

The movement is Rectilinear with variable acceleration

$$
2-We \text{ have:} \begin{cases} t = 0 & (1) \quad \text{and} \quad v = -t^2 + 9t \\ x = 4m & \text{if} \quad \text{if} \quad y = \frac{dx}{dt} \implies dx = vdt \implies dx = \left(-t^2 + 9t\right)dt \\ \int_{x_0}^{x} dx = \int_{x_0}^{t} (-t^2 + 9t)dt & \implies x - x_0 = \frac{-t^3}{3} + \frac{9t^2}{2}
$$

$$
\implies x = \frac{-t^3}{3} + \frac{9t^2}{2} + x_0 \quad \forall x
$$

$$
(1) \rightarrow \mathbf{x} \implies 4 = \frac{-(0)^3}{3} + \frac{9(0)^2}{2} + x_0 \implies x_0 = 4m \quad (2)
$$

$$
(2) \rightarrow \mathbf{x} \implies x = \frac{-t^3}{3} + \frac{9t^2}{2} + 4
$$

18

 $\overline{}$

4. Sinusoidal rectilinear movement

The motion of a material point is rectilinear sinusoidal if its time equation can be written in the form :

 $x = X_m \sin(\omega t + \varphi)$ or $x = X_m \cos(\omega t + \varphi)$

x

 X_m *: Amplitude (m). x : instantaneous abscissa (m), it varies between two extreme values* $-X_m \le x \le +X_m$ because $-1 \le \cos{(\omega t + \varphi)} \le +1$ $-X_m \leq X_m \cos{(\omega t + \varphi)} \leq X_m$

: *Pulse of movement (rad/s) .*

: *Initial phase (rad) .*

 $\omega t + \varphi$: *Instant phase (rad).*

Expression of velocity

By deriving the time equation we obtain the expression for instantaneous velocity

We have:
$$
x = X_m \cos(\omega t + \varphi) \implies v = \dot{x} = \frac{dx}{dt}
$$

\n
$$
[cos f(x)]' = f'(x)(-sin f(x))
$$
\n
$$
v = -X_m \omega \sin(\omega t + \varphi)
$$

This velocity varies between two extreme values : $-1 \leq \sin(\omega t + \varphi) \leq +1 \implies -X_m \omega \leq -X_m \omega \sin(\omega t + \varphi) \leq X_m \omega$ **V**

$$
\Rightarrow \boxed{-X_m\omega \leq v \leq +X_m\omega}
$$

Expression of acceleration

We have:
$$
v = -X_m \omega \sin(\omega t + \varphi)
$$
 \implies $a = \ddot{x} = \frac{dv}{dt}$

$$
\implies \boxed{a = -X_m \omega^2 \cos(\omega t + \varphi)} \implies \boxed{a = -x \omega^2}
$$

This acceleration varies between two extreme values :

$$
-X_m \omega^2 \le a \le +X_m \omega^2
$$

-1 \le cos (\omega t + \varphi) \le +1

$$
-X_m \omega^2 \le -\omega^2 X_m \cos (\omega t + \varphi) \le X_m \omega^2
$$

