First year

TD 03

Exercise 1

Let P^* be the set of prime numbers strictly greater than 2. We consider the relation \mathcal{R} between two elements of P^* defined as :

$$p\mathcal{R}q \Leftrightarrow \frac{p+q}{2} \in P^*$$

Is the relation \mathcal{R} reflexive, symmetric, and transitive?

Exercise 2

Let $\mathcal R$ be a relation defined on $\mathbb Z\times\mathbb N^*$ as :

$$(a,b)\mathcal{R}(a',b') \Leftrightarrow ab' = a'b.$$

1. Show that ${\mathcal R}$ is an equivalence relation.

2. Let $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, with gcd(p,q) = 1. Describe the equivalence class of (p,q).

• Exercise 3

We define the relation \mathcal{R} on \mathbb{R}^2 by :

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow x+y=x'+y'$$

1. Show that \mathcal{R} is an equivalence relation.

2. Find the equivalence class of the couple (0,0).

È Exercise 4

We define the relation \mathcal{T} on \mathbb{R}^2 by

 $(x,y)\mathcal{T}(x^{'},y^{'}) \Leftrightarrow |x-x^{'}| \leq y^{'}-y.$

- 1. Verify that \mathcal{T} is an order relation. Is this order total?
- 2. Let $(a,b) \in \mathbb{R}^2$ represent the set $\{(x,y) \in \mathbb{R}^2/(x,y)\mathcal{T}(a,b)\}$.