First year

TD 01

Exercise 1

Consider the following four statements :

- (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0.$
- (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0.$
- (c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y > 0.$
- (d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x.$
- 1. Are the statements a, b, c, d true or false? Provide their negations.
- 2. Let P, Q, and R be three statements. Verify by creating a truth table :
 - (a) $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$,
 - (b) $\overline{(P \Rightarrow Q)} \Leftrightarrow P \land \overline{Q}.$

[•]Exercise 2

- Let f function of \mathbb{R} in \mathbb{R} . Translate the following expressions into quantifier terms :
- 1. f is bounded above. 2. f is bounded.
- 3. f is even.
- 5. f is periodic.

- 4. f never equals zero.6. f is increasing.
- 7. f is not the zero function.
- 8. f attains all values in N.

Exercise 3

Let $f : \mathbb{R} \to \mathbb{R}$. What is the difference in meaning between the two proposed statements?

- 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y = f(x)$ and $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y = f(x)$.
- 2. $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y = f(x)$ and $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y = f(x)$.
- 3. $\forall x \in \mathbb{R}, \exists M \in \mathbb{R}, f(x) \leq M$ and $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \leq M$.

Exercise 4

Show by recurrence that :

1. $\forall n \in \mathbb{N}^{\star} : 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$ 2. $\forall n \in \mathbb{N}, 4^n + 6n - 1$ is a multiple of 9.

Èé Exercise 5

By the absurd show that : $\forall n \in \mathbb{N}, n^2 \text{ even} \Rightarrow n \text{ is even.}$

-`@-Exercise 6

By contrapositive, show that

1. If $(n^2 - 1)$ is not divisible by 8 then n is even.

2. $\forall \varepsilon > 0, |x| \le \varepsilon \Rightarrow x = 0.$

Department of mathematics

First year

Solutions of TD 01

Solution of exercise 1

- 1. is false because its negation is $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y \leq 0$, is true. let $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$, such that $x+y \leq 0$, for example we can take y = -(x+1) and then $x+y = x-x-1 = -1 \leq 0$.
- 2. is true, for any given x for example we can take y = -x + 1, and then $x + y = 1 \ge 0$. Then negation of 2) is $\exists x \in \mathbb{R}$; $\forall y \in \mathbb{R}$; $x + y \le 0$:
- 3. is false for example x = -1, y = 0. The negation is $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y \leq 0$.
- 4. is true, we can take x = -1, the negation is $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^2 \leq x$.
- 5. Truth table :

P	Q	R	$P \lor Q$	$(P \lor Q) \land R$	$P \wedge R$	$Q \wedge R$	$(P \land R) \lor (Q \land R)$
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0
1	0	1	1	1	1	0	1
0	1	1	1	1	0	1	1
1	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	0	0	0	0	0

6.

P	Q	\overline{Q}	$P \wedge \overline{Q}$	$P \Rightarrow Q$	$\overline{P \Rightarrow Q}$
1	1	0	0	1	0
0	0	1	0	1	0
1	0	1	1	0	1
0	1	0	0	1	0

Solution of exercise 2

- 1. $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \leq M.$
- 2. $\exists M \in \mathbb{R}, \exists m \in \mathbb{R}, \forall x \in \mathbb{R}, m \le f(x) \le M.$
- 3. $\forall x \in \mathbb{R}, f(x) = f(-x).$
- 4. $\forall x \in \mathbb{R}, f(x) \neq 0.$
- 5. $\exists \alpha \in \mathbb{R}^*, \forall x \in \mathbb{R}, f(x + \alpha) = f(x).$
- 6. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x \le y \Rightarrow f(x) \le f(y).$
- 7. $\exists x \in \mathbb{R}, f(x) \neq 0.$
- 8. $\forall n \in \mathbb{N}, \exists x \in \mathbb{R}, f(x) = n.$

Solution of exercise 3

- 1. The first statement is verified by any function, the second one means that f is constant.
- 2. The first statement means that f takes every value in \mathbb{R} , the second one is absurd.
- 3. The first statement is always verified, the second one means that f is bounded.

L'arbi Ben M'hidi Oum El Bouaghi university

Department of mathematics Module: Algebra 01 First year Solution of exercise 4 1. Let's show that $P_n: 1^3 + 2^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}, \quad \forall n \in \mathbb{N}^*$ • For n = 1 we have $: 1^3 = \frac{1^2(2)^2}{4} = 1$ So P_1 is true. • We suppose that $P_n: 1^3 + 2^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$ is true. And we show that $: 1^3 + 2^3 + ... + n^3 + (n+1)^3 = \frac{(n+1)^2(n+2)^2}{4}$ is true. Using P_n we obtain : $1^3 + 2^3 + ... + (n+1)^3 = 1^3 + 2^3 + ... + n^3 + (n+1)^3$ $= \frac{n^2(n+1)^2}{4} + (n+1)^3$ $= \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$ $= \frac{(n+1)^2(n^2+4n+4)}{4}$ $= \frac{(n+1)^2(n+2)^2}{4}$ Thus P_{n+1} is true, then $\forall n \in \mathbb{N}^{\star} : 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$. 2. Let's show that $P_n: 4^n + 6n - 1$, $\forall n \in \mathbb{N}$ is a multiple of 9, that's to say $\forall n \in IN$, $\exists k \in \mathbb{Z} / 4^n + 6n - 1 = 9k$ • For n = 1 we have : $\exists k = 1 \in \mathbb{Z}, 4 + 6 - 1 = 9 = 9(1), P_1$ is true. • We suppose that : $\forall n \in IN$, $\exists k \in \mathbb{Z} / 4^n + 6n - 1 = 9k$ is true. And we show that : $\forall n \in IN, \exists k' \in \mathbb{Z} / 4^{n+1} + 6(n+1) - 1 = 9k'$ is true. $4^{n+1} + 6(n+1) - 1 = 4 \cdot 4^n + 6n + 6 - 1$ $= (9-5)4^n + 6n + 5$

Solution of exercise 5

Let $n \in \mathbb{N}$ by the absurd suppose that n^2 is even and n is odd, then $\exists k \in \mathbb{Z}$ such that : n = 2k + 1 hence $n^2 = 2(2k^2 + 2k) + 1 = 2k^{'} + 1$, $k^{'} = (2k^2 + 2k) \in \mathbb{Z}$, n^2 is odd contradiction because n^2 is even. What we initially assumed is false i.e. $\forall n \in \mathbb{N}, n^2$ even $\Rightarrow n$ is even.

Solution of exercise 6

1. Let us show that its contrapositive : n is odd $\Rightarrow (n^2 - 1)$ is divisible by 8 is true Let n be odd then $\exists k \in \mathbb{Z}$ such that n = 2k + 1 and therefore $n^2 = 4k^2 + 4k + 1$. $n^2 - 1 = 4k^2 + 4k = 4k(k + 1)$ it is enough to show that k(k + 1) is even. Let us show that k(k + 1) is even, we have two cases :

- If k is even then k + 1 is odd so the product of an even number and an odd number is even.
- If k is odd, then k+1 is even so the product is even, it's the same reasoning (you should know that the product

 $= 9(4^n) - 5 \cdot 4^n - 5(6n) + 36n + 5$ = -5(4ⁿ + 6n - 1) + 9(4ⁿ) + 36n

= 9k', such as $k' = -5k + 4^n + 4n$

 $= -5(9k) + 9(4^{n}) + 9(4n)$ = 9(-5k + 4ⁿ + 4n)

L'arbi Ben M'hidi Oum El Bouaghi university

Department of mathematics	First year	Module: Algebra 01
of two consecutive numbers is alw Thus $k(k+1)$ is even $\exists k' \in \mathbb{Z} / n^2 - 1$ is divisible by 8.	ways even). $k(k+1) = 2k'$, hence $n^2 - 1 = 4(2k') = 8$	8k'.
2. Let us show that its contrapositi Let $x \neq 0$, there exists $\varepsilon = \frac{x}{2} > 0$	ve : $x \neq 0 \Rightarrow \exists \varepsilon > 0, x > \varepsilon$ is true 0 such that $ x > \frac{x}{2}$ because $x \neq 0$ hence the	he result.