University of Oum El Bouaghi Introduction to topology Academic year: 2024/2025 License 2 - Mathematics

Sheet of exercises $N^{\circ}1$

Exercise 1 We equip $X = \{a, b, c, d\}$ with the topology $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}\}.$

- 1. What are the closed sets of the topological space (X, τ) ?
- 2. Give the set of neighborhoods of each of the points a, b and c.
- 3. Determine the closure, the interior and the boundary of the subset $A = \{a, b, c\}$.
- 4. Specify the accumulation points and the isolated points of A.

Exercise 2 We equip \mathbb{R} with the usual topology.

- 1. Describe the interior, the closure and the boundary of the set $A = \left\{\frac{1}{n} ; n \in \mathbb{N}^*\right\}$.
- 2. Specify the accumulation points and the isolated points of A.

Exercise 3 In \mathbb{R} equipped with the usual topology, consider the part

$$A =]-\infty, -1[\cup \left\{0, \frac{\pi}{4}, \sqrt{3}\right\} \cup \left\{3 - \frac{1}{n} \ ; \ n \in \mathbb{N}^*\right\}.$$

- 1. Determine \mathring{A} , \overline{A} and ∂A .
- 2. Determine the accumulation points and the isolated points of A.

Exercise 4 On the interval X = [0, 1[, we introduce the family τ of sets of the form [0, a[with $0 \le a \le 1$.

$$\tau = \{ [0, a[; 0 \le a \le 1 \}.$$

- 1. Show that τ is a topology on X.
- 2. What are the closed sets of (X, τ) ?
- 3. Determine the closure and the interior of the interval $I = \begin{bmatrix} \frac{1}{4}, \frac{3}{4} \end{bmatrix}$ in (X, τ) .
- 4. Verify that (X, τ) is not separated.
- 5. Let $(x_n)_n$ be a sequence of numbers in X that converges in the usual sense to $\frac{1}{2}$, i.e.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N : \quad \left| x_n - \frac{1}{2} \right| < \varepsilon.$$

Show that in (X, τ) , $(x_n)_n$ converges to any number $\ell \in \left[\frac{1}{2}, 1\right[$.

6. Show that $\mathbb{Q} \cap X$ is dense in (X, τ) . Deduce that (X, τ) is separable.

Exercise 5 Cofinite topology.

1. Let X be a nonempty set.

- a) Show that the family $\tau = \{\emptyset\} \cup \{\mathcal{O} \in \mathcal{P}(X) ; \mathcal{O}^c \text{ is finite}\}\$ is a topology on X (called Cofinite topology on X).
- b) Show that if X is an infinite set, then the topological space (X, τ) is not separated.
- c) Show that if X is an infinite set, then any infinite subset of X is everywhere dense. Deduce that (X, τ) is separable.
- 2. We equip \mathbb{R} with the cofinite topology τ .
 - a) Determine the interior, the closure and the boundary of each of the following parts:

 $\mathbb{N}, \quad \mathbb{N}^* = \mathbb{N} \setminus \{0\} \quad \text{and} \quad \mathbb{Z}^* = \mathbb{Z} \setminus \{0\}.$

- b) Show that N does not admit any isolated point. Deduce the set of accumulation points of N.
- c) Compare the topology τ with the usual topology τ_u of \mathbb{R} .
- 3. Let f be the map of (\mathbb{R}, τ) in (\mathbb{R}, τ_u) defined by

$$f(x) = \begin{cases} 0, & x \le 0, \\ x^2, & x > 0. \end{cases}$$

- a) Draw the representative curve of f.
- b) Show that f is not continuous at any point of \mathbb{R} .

Exercise 6 Show that in a separated space X, a point $x \in X$ is an accumulation point of a part A if and only if every neighborhood of x intersects A in an infinite number of points.

Exercise 7 We propose to show that a subspace of a separable topological space is not necessarily separable.

Let X be an uncountable infinite set and a be a fixed point of X.

- 1. Consider the family $\tau = \{\emptyset\} \cup \{B \in \mathcal{P}(X) ; a \in B\}.$
 - a) Show that τ is a topology on X (called Particular point topology).
 - **b)** Describe the closed sets of the space (X, τ) .
 - c) Deduce that the space (X, τ) is separable.
- 2. Let the subset $A = X \setminus \{a\}$. Show that the topology τ_A induced on A by τ is the discrete topology on A and explain why (A, τ_A) is not separable.