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CHAPTER 1
SOIL STRESS

I. DEFINITION ET HYPOTHESES
Continuous media mechanics is a field interested in the deformation of solids and fluid flow,
if we look at matter from «very close» (nanoscopic scale), the matter is granular, made of molecules,

but to the naked eye, a solid object seems continuous, That is, its properties seem to vary gradually.

The basis of continuous media mechanics is the study of deformations and phenomena associated with
a transformation of a medium. The notion of deformation is used to quantify how lengths were dilated

and angles changed in the medium (stresses-deformations).

The study of the behaviour of real materials (steel, concrete, soil, etc.) involves simplifying

hypotheses that allow to define two quantities: stresses and deformations.

The continuous media hypothesis consists of considering media whose characteristic properties, that is

to say those which are of interest (density, elasticity, etc.) are continuous.

Additional assumptions may be made; thus a continuous medium can be:

e homogeneous: its properties are the same in all respects;
e isotropic: its properties do not depend on the reference point in which they are observed or
measured.

The soil is deformed by external stresses from the structure. For practical purposes, and in order to
obtain simple formulas for calculating the stresses and strains of the soil, it is assumed that the soil is a
continuous medium subject to its weight and overloads of the structure, described by the general
equations of the equilibrium of the massifs.

The stresses are induced in the soil by its weight as well as by the overload from the structure. In the
latter case, the calculation is based on the theory of elasticity and only covers the most common load

cases in projects.

I1. CONCEPTS OF CONSTRAINTS

I1.1. TOTAL CONSTRAINT

Or a mass of fine soil saturated, homogeneous and isotropic. If the soil is viewed in a global
way, it can be assimilated to a continuous medium and study the stresses exerted on a given facet at a
given point of this massif.
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Is a mass on the surface of which forces are exerted. By cutting this mass in a fictitious plane
(P), the surface element "3 S" around the point "M" on the surface "S" is subjected to a force of & F

(fig 1.1).
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Fig 1.1: Constraint in a medium
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The constraint at point "M" is the vector f :E , This constraint decomposes into a normal

constraint ¢ and a tangential constraint T from which: f = ofi+ 7t

With: fi outbound normal unit vector and t tangent unit vector.

In soil mechanics, to determine the state of stress around an "M" point in the ground, it is
sufficient to know the components of the forces exerted on the faces of a parallelepiped centered
around the "M" point and whose edges are parallel to the axes Ox, Oy, Oz.

The state of stresses at point M is defined by a symmetrical matrix called stress tensor:
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The theory shows that to determine the stresses on all the different facets around a point M, it is
sufficient to know at this point the values of the six quantities:

Ox , Oy, Oz, Txy = Tyx » Tzx = Txz € T2y = Tyz

Among the facets around the M point, there are 3 privileged planes for which the tangential constraint
is zero (t = 0). These 3 planes are called master plans.

Their normal directions, main directions and corresponding constraints, main constraints, noted:
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61 Major main constraint.

o 2. Intermediate main constraint.
6 3. Minor main constraint.

With: 61 > 62> oa.

In other words, by taking these three main directions as a reference, the stress tensor becomes

opb 0 O
diagonal: = 0 o, O
0 0 oy

11.2. EFFECTIVE CONSTRAINT “TERZAGHI POSTULATE”

Within a soil mass, water pressure or air pressure apply at each point and combine with total
stresses to induce local soil behaviour. In saturated (water) soils, it has been accepted since the
publication of the Terzaghi «effective stress principle» in 1925 that soil deformation does not depend
separately on total stresses and water pressures but on their difference. For this reason, a new type of
stress is introduced, called “effective stresses”, which are related in the following way to total stresses
and pore pressures.

c6=c¢'tuetrt=1
Or:
o (respectively 1) is the total normal stress (respectively tangential).

o' (respectively T') is the normal effective stress (respectively tangential).
u is the interstitial pressure of the fluid (U = y,, xh,,.).

o' cannot be measured but only calculated.

In dry soils the effective stresses are identical to the total stresses.

I1l. MOHR CIRCLE

Mr. MOHR had the idea to simply represent, for a given point M of a solid subjected to a
given stress f, the distribution of normal or tangential stresses according to the considered facet using a
circle called Mobhr's circle. Each point described by the circle represents the reading of normal and
tangential stress for the facet at an angle 0 (0 is the angle between the considered facet and the facet
bearing the major stress).
In the two-dimensional case, which is very common in geotechnics, the Mohr circle is the place of the

ends of the stress vectors and the main stresses are reduced to two.

111.1 ANALYTICAL METHOD

In the reference system (Ox, Oz) the stress tensor is written:
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_ [GX TZX

with tx=1
TXZ cz] X

Knowing the stresses on the facets of normal Ox and Oz, one can determine the stresses on any other
facet inclined at an angle "0" - see fig. .3 —
It should be emphasized that in soil mechanics the following sign convention is adopted:

- 6 >0 in compression

- < 0 in traction

Fig 1.3: Two-dimensional stress state.

If the first equilibrium condition is written (the sum of the forces is zero), the state of stress on the

inclined plane of “0” will be as follows:

=05 Jg{?‘-' 402 ;0' X cos2H—rrzsinlé

rp—L=CLsin20+7xzcos20

-

The locus of stresses in the plane (o, 1) is defined by the relationship :

_OX+0z b op,_| O2—0X b, 2.
o8 OISO f+r9—;72 PP

It is the equation of a circle (Mohr’s circle) of:

- coordinate center ((oxt+ 62)/2 , 0).
|I. o.—d - 2
- = .Y L
R:V' ﬁ—z )7HT -

The orientation of the main plans is obtained fort =0, or

- Radius:

27Txz ;
] :—‘l“m'f.a:q L= ot 4 =6 1 7/2
2 0z—0x <

There are therefore two main plans, the orientation of which is given by 0, and 6,. The major and

minor main constraints are determined from the circle equation:
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Fig 1.4: Mohr circle.

Note that if the x and z directions are main (ox= o3; 6; = o1 and tx=0) we find:
:O'1J£O'3 +O-1;O-3 cos26

70 :70-1;03 sin2 @

o6

111.2 GRAPHIC METHOD
The stress state is determined on the plane inclined at an angle 6 and whose values of main

stressesc 1ando sare known (see fig. 1.5)

J

Fig 1.5: Stress state on an inclined plane.

I —

The approach used to solve this problem is as follows (see fig. 1.6):

- Fromo 1, we trace a parallel to the plane of 1

- Fromo 3, we trace a parallel to the plane of o3

- The intersection of the two planes gives the "P" pole

- From the pole «P», we trace the parallel to the facet on which we want to find the state of
constraints (oo and Ty )

- The intersection of this line with the circle gives cgand ¢
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Fig 1.6: Mohr’s circle (graphical method)

IV. STRESS CALCULATION
IV.1. REAL CONSTRAINT — OVERLAY PRINCIPLE-

The soil is treated as a semi-infinite elastic medium with a horizontal surface. The calculation
of stresses in a heavy and loaded mass is based on the use of the principle of superposition (see
fig.1.7).

The actual stress (o z) at the depth Z on a horizontal facet is equal to the sum of the natural stress

(ow), due to the weight of the overlying soil and the stress due to overloads (Acz).

G, =0,,t AGZ

contrainte a la J ‘ L contraintes dues
profondeur z contrainte due au aux surcharges
poids des terres

A | oA -
Pooe -

o

Fig 1.7: Pfinciple of sﬁperposition.

IV.2. EIGENWEIGHT CONSTRAINTS (GEOSTATIC)
Natural (or geostatic) stress is the stress exerted on a horizontal free surface soil on a

horizontal facet before loading; It is generally the weight of the land that overcomes the point

considered. The facet considered having its vertical normal the corresponding normal stress is

markedo vo.
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For a soil of density y (in KN/m3),

and at a depth z (in m) see fig. 1.8, the stress
vertical is:

GV:szZ

Fig. 1.8 : Undefined soil with horizontal surface

In the case of a laminate floor in several layers with different density weights and different heights:

Oy :Z Ve x4,

Example: Let us plot the variation diagrams of ¢ v, ¢'v and u in relation to the depth
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IV.3. OVERLOAD STRESS

IV.3.1 Case of a load evenly distributed over the entire surface g

In this case, regardless of the depth z, we have:

Aoz =q

1V.3.2 Point overload Q
We use the formula of Boussinesq which gives
the vertical stress at any point M of a non-weighted

elastic medium loaded with a vertical point force Q:
30 7
2T, -

(.T" +2z° )

This relation ship can still be written:

Ao. =

0
Ao.=—=N  With N=

Fig 1.9 Diagraphes of Variation of Total, Effective

and

Interstitial according to the Depth.

Ao.
M

Fig. 1.10 : Point load
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The appendix to abaque N° 1 gives the variations of N as a function of r/z.

1VV.3.3 Case of a uniform rectangular load
The stress increase in a semi-infinite medium under the corner of a uniform rectangular distribution (q)
is given by the relation:

Ao = k.a Withqin KN/m?and

3 a b .
F=klm.n) avec m=—:n=— Iisafactor

of influence with out dimension given in abaque N°2

Example
If point A is inside the loaded rectangle —f*-i*—"—-—-*mi"-—'—ﬂ
bi 4 V /,:/: A‘L
Ao =k +k +k+k)
i : ) i 1 % 4] / by
Dnﬁd Lietfrriogy |Jrnrme_g_;ar A
If point A is outside the loaded rectangle e
a; S A
b 3 2] T
7
Ao =(k o .p—Fkow—k. o +k)g b /-2/ R
.= (Rasy kg — Koy +)4 a2 / / ///‘
. < byl
1VV.3.4 Loading in infinite length fill
The vertical stress under the corner of a - 2 - : L
1 I q
distribution of loads of infinite length in shape P
of fill and at depth z (fig. 1.12) is given i ] l
by:
X
Ac. =1gq 7%
{a b} . . ) ) ) . e .
I'=1I —.— | : coefficient without given dimension Fig. 1.12 : Filling in the fill

in abaiq_lje_N°3.
Note:
This is a constraint value under the corner of a load distribution. Thus, when the backfill to two

slopes, do not forget to add the action of the right part to that of the left.
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